

SQL-SALES

User Guide

&

Technical Reference

 Version 26.1.0.0

 1 | P a g e

CONTENTS
Installation .. 3

Environment Setup ... 7

Connecting with OAuth 2.0 .. 13

Managed Package installation .. 27

Database Enabling ... 41

ss_EnableDatabase.sql ... 41

Full Schema isolation support .. 43

Full Replication .. 45

ss_Replica .. 45

ss_ReplicaAll ... 55

Delta Replication .. 57

ss_Delta .. 57

ss_DeltaAll ... 65

Meta Data .. 67

ss_MetaObject ... 67

ss_MetaField .. 69

ss_MetaPick .. 71

Helper Tools ... 73

ss_UserInfo ... 73

Working with Salesforce 15 character Ids .. 75

ss_18.. 76

ss_Admin ... 77

Loading (SS_Loader) .. 78

SSId ... 83

Insert ... 85

Update ... 86

 2 | P a g e

Delete ... 88

Undelete .. 90

Upsert ... 91

Files and Notes ... 96

Bulk API .. 114

BulkAPIv1Insert ... 116

BulkAPIv1Update ... 121

BulkAPIv1Delete ... 126

BulkAPIv1Harddelete .. 131

BulkAPIv1Upsert ... 136

BulkAPIv2Insert ... 141

BulkAPIv2Update ... 145

BulkAPIv2Delete ... 149

BulkAPIv2Harddelete .. 153

BulkAPIv2Upsert ... 157

Technical Overview .. 161

SQL-Sales Config ... 162

OAuth 2.0 Setup ... 163

installation Summary .. 165

Licencing Arrangements .. 166

 3 | P a g e

INSTALLATION

Installing SQL-Sales to your SQL Server from the provided “SQLSalesInstaller.exe” is straight-forward

with minimal inputs required to get going on working with Salesforce data directly in your SQL

Server.

Start here Licence Agreement

Note, you will also need to install the SQL-Sales Managed Package, see here

Once the package is installed, you can immediately start using SQL-Sales by connecting in the
Configuration tool (you are about to install) with Username-Password (SOAP or REST api).
However if you wish to connect with OAuth 2.0 (REST api) you will need to make the configuration
changes, here

https://intercom.help/sql-sales/en/articles/9606814-managed-package-installation
https://help.sql-sales.com/en/articles/9518676-connecting-with-oauth-2-0

 4 | P a g e

By default the location of the SQL-Sales config will

be to root drive where your Windows OS is

installed (typically C:\)

Customise this as required (usually to a more

appropriate folder on the SQL Server such as

C:\SQLSales\Working)

Example of a customised configuration path Generally, accept the default installation location,

or customise as required

Installation running… You’re all set, now Open from your SQL Server

Start Menu

 5 | P a g e

Select “SQL-Sales Config” to open the SQL Sales

Environment Definition tool.

In the guide, the Environment “DEMO” has been

created. Select your Environment name and click

“Open”.

Daemon Status

The SQL-Sales Daemon is started automatically the first time it is called (by running one of the stored

procedures1). It can be controlled from a user’s client SSMS by running:

exec ss_Admin 'STOP'

against any SQL-Sales enabled database.

In normal use, the stored procedure will ensure the Daemon is kept running , however the Start/Stop

buttons allow for quick setup smoke testing on the installation SQL Server, removing the need to run

a stored procedure.

1 See “Enabling Database” section

 6 | P a g e

Housekeeping Schedule

File>>Housekeeping

This feature instructs SQL Sales to perform auto housekeeping tasks at a set time either Daily or

Weekly. It is recommended (but not mandatory) that you setup a schedule, for example 3am daily.

Pause an existing schedule, if required, by unchecking “Active”.

Attribute Notes

Frequency

Monday-Sunday picklist (if a daily schedule is required and not a set day

per week, either don’t select a day or pick the empty day at the top of

the list).

Time Choose an HH:MM minute in the range 00:00 to 23:59

Daily
Checkbox (if daily is required, do not select a day in Frequency, else

you’ll encounter the validation message shown above)

Active Checkbox

 7 | P a g e

Environment Setup
Opening a given Environment from the definition window produces the second main window below

where you configure a specific Environment, refer to the attributes reference that follows for detailed

guidance, although at a minimum, to get started immediately, you’ll need to enter:

• Sandbox (checkbox, hence tick/not ticked)

• Username, Password, Security Token

• Working Path

Note, if the Org you are installing to has this security setting enabled (which has to be

requested to SF to be enabled, so is not an available feature by default):

Security >> API Access Control >> API Access Control Settings >> "For admin-approved users,

limit API access to only allowlisted connected apps" = TRUE - this effectively means you

must connect via the OAuth2.0 option. If you try with Username-Password-Security Token

(SOAP or REST) you will encounter this message when testing the connection:

CLIENT_NOT_ACCESSIBLE_FOR_USER: Sorry, your administrator has blocked access to

this client.

The SQL-Sales managed connected app is allowlisted but inherently OAuth 2.0. Therefore

unless that setting can be unticked in your Org - if so, Username-Password-Security Token

(SOAP or REST) can be used too.

 8 | P a g e

Attribute Notes

Environment

An Environment defines each unique connection to a Salesforce

instance, whether that is a Sandbox or a Production Org, all connection

work is done against this Name

Sandbox

Click this checkbox if your given Environment is a sandbox. Note, there

are no licence restrictions imposed on accessing a sandbox, regardless

of the Salesforce Org they belong to (i.e. even Orgs different to the

one(s) you have licenced have no cost implication).

LogDate Last log datetime

 9 | P a g e

Attribute Notes

Username

The Salesforce User used in the connection. This will be a Production

username for your Production instance, or if you're defining a sandbox

Environment, then a sandbox username.

Password The Password of your username (text security obscured)

Security Token The Security Token of your username (text security obscured)

Working Path

SQL Sales for the BULK Connection Method makes temporary use of a

working directory on a drive available to the SQL Server. No data is held

at rest and you are advised to check there is suitable spare capacity on

the drive which hosts this directory.

Chunksize

Defaulted to 100000. SQL Sales will chunk internal data processing to

this setting, separate to any api batchsize you may have specified for a

given replication or data operation. Note, for certain heavier data

operations, the specified Chunksize may be automatically lowered to

achieve optimal data transfer between Salesforce and SQL Server.

Boolean as bit

Salesforce will by default return boolean fields as TRUE or FALSE, which

SQL Server handles in a varchar(5) datatype. Working in SQL Server it is

often preferable to work with a bit datatype.

Null updates (SOAP &

BULK api)

By default when using the loading to Salesforce with the SOAP and

BULK apis, you are not permitted to update a field with an null, this

setting overrides that. REST by default does permit a null over-write

hence not part of this setting.

DropSSId
When loading to Salesforce, via a SQL Server table, SQL Sales will define

a primary key

Instance

This is your Salesforce instance url, click on "Gather Instance & urn" to

populate for your given username. By default this will return your

current Salesforce api version for your end point. This will always be the

latest api version you are set to, however this can be customised to a

specific older api version if that is relevant to your particular

requirements. Customise by altering the api version number in the

Instance string. Note, connecting with Username; Password & Security

Token is only supported by Salesforce up to v64.0. As such if you select

a version > 64.0, SQL-Sales will automatically downgrade to 64.0

urn

This is your urn, which by default will return the urn for your Salesforce

end point as defined by your username. Customise this if necessary for

your particular requirements, typically you would expect to have one of

these two:

urn:enterprise.soap.sforce.com

urn:partner.soap.sforce.com

Generally, just accept the defaut returned for you

Load ContentVersion

as data, not from file

When loading files to Salesforce, typically this is achieved by providing

the path to a file located on a drive accessible by SQL Sales, in a UNC

location. Alternatively, by checking this option, you can provide the file

 10 | P a g e

Attribute Notes
as a field in a SQL Server table (see detail in the ss_Loader stored

procedure).

Include base64 fields

with replica/delta

By default, when replicating (via ss_Replica & ss_Delta), Salesforce fields

which contain Content (base64) data are not included as they are binary

data-heavy. If you require this data, check this box.

Connection Method

(BULK/ODBC)

BULK (for the bulk text based method)

ODBC (for ODBC). Typically BULK is quicker but you decide what works

best for your situation.

Logging

Default is 0-OFF. The log file is created in the same location as the

setup “Configuration Path Selection”. Generally, logging is not necessary

and certainly 1-DEBUG should only be used when diagnosing issues with

SQL-Sales support

0-OFF

1-DEBUG

2-INFO

3-WARNING

4-ERROR

5-CRITICAL

ODBC: SQL Server
Applicable only for the ODBC method: specify your SQL Server, this will

be the server on which you have installed SQL Sales.

ODBC: Use trusted

connection

Applicable only for the ODBC method: If applicable to your setup and

how you have installed SQL Sales (i.e. how you are running SQL Sales).

Check this if Windows trusted connection is applicable to your use case.

ODBC: SQL Login
Applicable if connecting via a SQL Server login (i.e. not trusted

connection).

ODBC: SQL Password
Applicable if connecting via a SQL Server login (i.e. not trusted

connection). (text security obscured).

ODBC: Driver List of available drivers available on your specified SQL Server.

Integration Username

The API or integration Username specified in the sub (subject) claim of

the JWT token (when using OAuth 2.0 to authenticate and connect to

Salesforce).

Custom Connected

App

Each configured Environment in each installation of SQL-Sales will

require a custom connected app setting up, enter the name here, for the

given Environment (when using OAuth 2.0 to authenticate and connect

to Salesforce). Note, SQL-Sales will only accept alphanumeric, space and

underscore characters for the ConnectedApplication.Name.

Consumer Key
Consumer key, copied from the above custom connected app to

authenticate and connect to Salesforce).

Expiration (days)

Enter a numeric value between 1 and 365. This inputs to the certificate

validity period which you'll create, for passing to the custom connected

app when setting it up to authenticate and connect to Salesforce).

"Create Certificate"

button

This will generate and pass a new digital certificate to your clipboard, for

you to save as a .pem file for uploading to your custom connected app.

 11 | P a g e

Attribute Notes
The certificate is not held at rest within SQL-Sales. This is required to

authenticate and connect to Salesforce during the setup.

"Drop Certificate"

button
Instantly revoke an existing certificate.

Test Salesforce

validate your credentials and licence

Gather Instance & urn

Click on this button to see your Instance and urn. Edit as needed (usually you should have no need

to do this, but it can be helpful for more involved use cases. The example in the earlier “Environment”

window is from our Demo developer Org.

Save | Save & Close

Save will save your settings, whereas Save & close will Save and close the Environment Configuration

window, returning you to the first window, showing your list of Environments you have setup.

Base64

By default the following Objects and their Base64 field are included in what SQL Sales will action with

the "Include base64 fields with replica/delta" option. Should you have a custom or additional

requirement beyond this default state, clicking on "Base64" will open the window below where you

can enter the field you wish to include in your replication.

Included by Default

Attachment (Body)

ContentVersion (VersionData)

EmailCapture (RawMessage)

MailmergeTemplate (Body)

Scontrol (Binary)

ContentNote (Content)

Document (Body)

EventLogFile (LogFile)

MobileApplicationDetail

(ApplicationBinary)

StaticResource (Body)

 12 | P a g e

ODBC

Either connect using the trusted connection method or via direct SQL credentials (SQL Login and

password). Select the driver available to you based on what is actually installed on your SQL Server

(list shown below is purely illustrative).

Auto Close

The Configuration tool will auto close 12 hours after first opening or the last open, add, test or save

event, whichever is greater.

 13 | P a g e

CONNECTING WITH OAUTH 2.0

Create a Custom Connected App

In Setup type "External Client App", click on "Settings" as shown:

Enable "Connected Apps" and click on "New Connected App". You

are about to create a new Connected App. To subsequently find

your created connected app, type "app" in the setup menu, click on

"App Manager"

Note, you only need to create a custom Connected App for the OAuth 2.0 connection method.
OAuth 2.0 provides increased levels of security and so may be required for some Customers or
use cases, alternatively simply use the traditional Username-Password-Security Token (SOAP or
REST api) connection method (i.e. which doesn't require a custom Connected App setting up).

All connection methods require the SQL-Sales Managed Package to be installed against the
configured Environment (sandbox or Production instance).

https://downloads.intercomcdn.com/i/o/1102935856/5d5b14ca99075e945bb9442c/image.png?expires=1724392800&signature=a71b86893ca19eebbabfc57ac7c91ca6a38e8c3a89e92fe228ec8dc0f83cc475&req=dSEnFMB9mIlaX%2FMW3nq%2BgcodlmQKA1XI34WyhZ0lUK1gJOeXNMGw6nT7l3Fj%0AT3XMohLVV%2BKRliSueGDGnSHzlI0%3D%0A

 14 | P a g e

Step 1 – New Connected App

Input field Notes

Connected App Name

Enter a suitable name for this Salesforce instance/sandbox, this is what

you will eventually enter into the SQL-Sales Environment Configuration

"Custom Connected App" input box.

Note, SQL-Sales will only accept alphanumeric, space and underscore

characters for the ConnectedApplication.Name

API Name Salesforce will auto-populate based on the above name

Contact Email Enter a suitable email for your use case

Step 2 - Click "Enable OAuth Settings

Input field Notes
Enable OAuth Settings Tick the checkbox

Note, there are data entry rules on the Custom App Name, specifically: "The Application API Name
can only contain underscores and alphanumeric characters. It must be unique, begin with a letter,
not include spaces, not end with an underscore, and not contain two consecutive underscores."
Which governs what can be created in the Name field (although spaces are permitted in the name
field).

https://downloads.intercomcdn.com/i/o/1102965086/19e14a099977c14629b4c27d/image.png?expires=1724392800&signature=f3061f347951a593cb3dafea89a611b7d4b303291c6b761f85e7c4f731d8a2b3&req=dSEnFMB4mIFXX%2FMW3nq%2BgdWCSxIgj%2BVb%2F4%2B0cPDrZC7dx5ABSSy0IprmChc8%0AZOvmh9kv3EQB%2F%2BbeCKbHFFWJFsg%3D%0A
https://downloads.intercomcdn.com/i/o/1102967812/538fc991a0e51c6793d57e64/image.png?expires=1724392800&signature=afef650e8ef09fa5f371e2e34623c0fccea1f5555e07e2f8707e9eff3f3c48e0&req=dSEnFMB4moleW%2FMW3nq%2BgbtuQexmX90mgwgN03iDC4QrPxBYa5xycqexohnb%0AwlUSqMWK6CMRRvnejTTH9WPU%2FAE%3D%0A
https://downloads.intercomcdn.com/i/o/1102947969/9dba7630b7fc47561ffefa89/image.png?expires=1724392800&signature=b5a51643a043d0c97014aa2afa2ef2983e9d0da3d48cf2b0f8de504795b5bd89&req=dSEnFMB6mohZUPMW3nq%2BgXbsN6nBfCMXNyEPdXGvTjgMlaYQIqJIraSqf%2F%2BU%0AkrLZPVHKJVSqBRVNgGlvSDyxTTk%3D%0A

 15 | P a g e

Input field Notes

Use digital signatures

This is not actually referenced in the Connected App settings used by

SQL-Sales, however it is a mandatory fill - entering the suggested

default is fine as it does nothing functionally:

https://login.salesforce.com/services/oauth2/callback

Use digital signatures
Revisited later in this article, once we have generated a self signed

certificate within SQL-Sales. For now ignore.

Selected OAuth Scopes

Select only:

Manage user data via APIs (api)

Perform requests at any time (refresh_token, offline_access)

Step 3 - The only OAuth 2.0 option to tick is: "Issue JSON Web Token (JWT)-based access tokens

for named users". SQL-Sales establishes and maintains connections to Salesforce only through JWT

(tokens). All other options, even ones which may be ticked by default are to be left unticked / False.

Step 4 - For the avoidance of doubt, no other options are to be enabled, no WebApp Settings; no

Custom Connected App Handler; no Mobile App Settings and no Canvas App Settings.

https://downloads.intercomcdn.com/i/o/1103028989/58dc762f80288672a46618fa/image.png?expires=1724392800&signature=d81f60570f87d85d717b79e6730fcef675cc53062db94e800cfe7b60f6176316&req=dSEnFcl8lYhXUPMW3nq%2BgUzdvQObux5I7XdtYIBiVJpa6RedX3WGgGwiSs%2BX%0AxLuFfUdj9PvHXHwCBi8VuQH8pIo%3D%0A
https://downloads.intercomcdn.com/i/o/1102956681/762b6a673e9fc4f8228ba1b7/image.png?expires=1724392800&signature=9caf7a0ccbdf000ae9763026dc4f59ae5c52bfd6e9678bba1bcaec09de82b6f1&req=dSEnFMB7m4dXWPMW3nq%2BgVlL8MN4rKyRbv3BOuey%2F5c0dbAS7tNaDViN09uu%0A4U0Afm8%2B%2FrMZqh8R%2FPVDnkbpjQw%3D%0A

 16 | P a g e

Step 5 - Save (we will return to complete the certificate upload later)

Step 6 - Click "Continue" at the notification prompt below, following the Save:

Manage Connected Apps

Step 7 - Following the Save>>Continue you'll be taken to the "Manage Connected App" window.

Click "Manage"

https://downloads.intercomcdn.com/i/o/1102959469/96effaf91a9af44d6bb54f93/image.png?expires=1724392800&signature=be2e380fed3c3cb056cacce3e2b84b4022317162f1108f9e792d6a8b97d59e98&req=dSEnFMB7lIVZUPMW3nq%2BgQ%2F5OB8MiTqq3RqOUdH2nq05yKczbrgQ06mZUpkk%0AL4MbAiQBKJM61SY6Y9A29A3dIfk%3D%0A
https://downloads.intercomcdn.com/i/o/1102962044/67954a5581d649638c9bfb08/image.png?expires=1724392800&signature=13330f53977ea57b9a22f69aadc2adcb8df1b1d5ce5f45886aa75db828f4c6ff&req=dSEnFMB4n4FbXfMW3nq%2Bgc%2FFbAUK4VCmdP2SdDKyRgnUVE6nHEF0zPU9qsDY%0ActpA7lcQ2VFVwc8mkSrhIGJEx0o%3D%0A
https://downloads.intercomcdn.com/i/o/1102963176/ac7cf731cd75ffc51f33f7cd/image.png?expires=1724392800&signature=227f706c3afcd011dc83f4fc0d6cc21e14e9cef7abcfdccfd655a7b72e965718&req=dSEnFMB4noBYX%2FMW3nq%2BgZJBz3KZY7lsFklAtoDOVLXuI2S3wAop3hgwGZb6%0ALtI9FnwYyQ4sCbqDOAbKvmBK8pc%3D%0A

 17 | P a g e

Step 8 - Click "Edit Policies"

Step 9 - In "Permitted Users" select "Admin approved users are pre-authorized"

https://downloads.intercomcdn.com/i/o/1102970996/fba4d49ef5933fca85d88ff1/image.png?expires=1724392800&signature=784c17360bdd17b7abdb7c890b00be838069cee9f4d02b50cc5f9d9291f5d689&req=dSEnFMB5nYhWX%2FMW3nq%2BgRnRrnfE04B9AWNEDYPjuIE90LcYxRvGHbxhzRrO%0AynB08ic1D%2FH%2B9QCXL68qp39Rqfw%3D%0A
https://downloads.intercomcdn.com/i/o/1103043461/e9ce8f7947ac75bdef892472/image.png?expires=1724392800&signature=fa98f32592a34c7af89bcdb851b42939b95ee871f907a17abdf1e80dac0c3f62&req=dSEnFcl6noVZWPMW3nq%2BgZmfXUL1t9cYuL5FcUPMxiobIKRXL%2BT%2BzdO4hfDL%0A7MlathHpksZuX23hpDVqPAer9Xs%3D%0A
https://downloads.intercomcdn.com/i/o/1102976311/bbc6f4e5b300710d26a62bc9/image.png?expires=1724392800&signature=5e58573529fab91e28aac6b1ca8cab1db1c863ae06c10bebd98d1cc52a9165bb&req=dSEnFMB5m4JeWPMW3nq%2BgVmvNjVL0r%2BaZ11RKwrmnNzp0tXW69%2B2GZJhqF3P%0AHAF7E8O7lhSfskiC2id4Yuw2Bsw%3D%0A

 18 | P a g e

You will receive the confirmation below, click "OK".

Step 10 - Ensure all options below are not entered / enabled - with the exception of:

Input field Notes
Issue JSON Web Token

(JWT)-based access

tokens

Tick the checkbox

Token Timeout
Select 30 Minutes (Note, SQL-Sales at run time will validate that 30

Minutes is the configured setting).

https://downloads.intercomcdn.com/i/o/1102975700/7d8c7defa6934c408ab629e7/image.png?expires=1724392800&signature=38f45a9ef6a9ee7514fa57f69ea5e238b4d53d1c727598d7894a8f7584564c45&req=dSEnFMB5mIZfWfMW3nq%2BgYf8y%2FzqbBz2BU1wrSyWU5Cs0yw%2B945asY0lQtjU%0AOthISzKOoWbY75bVhzszBQSdygM%3D%0A
https://downloads.intercomcdn.com/i/o/1102978243/3a369f3c6c3d553ed426e6ab/image.png?expires=1724392800&signature=a5bd53d9e88d1537f4c960bf9d87f0f7a7dba9acf2256b83633455561f2f0623&req=dSEnFMB5lYNbWvMW3nq%2Bgex13sAvIhnX8%2BPm%2FH%2F3E7MSkKIBn5RcN7zAsOgP%0AzXk%2F2BqeiOGKUnLEBEyWFq9yA%2Fg%3D%0A

 19 | P a g e

Step 11 - The remainder policy options should be defaulted as shown, if not ensure you have the

settings below:

Step 12 - Save the "edit policies" section

Step 13 - Connected App Detail - Manage Profiles

You'll be returned to the Connected App Detail window. Click on the "Manage Profiles" button:

https://downloads.intercomcdn.com/i/o/1102981350/21f2428745f002589988cbc5/image.png?expires=1724392800&signature=0ec7a0fbe9da14e99059d6c07ea6a25fc38f7a850b898c0b63390243e10fe9bc&req=dSEnFMB2nIJaWfMW3nq%2BgcIDAVQW7UJHrodbesc5fUM6pDkYCUlTMWvTXBkY%0AHPmONZg0K7yeUoGD4O6c1TarU8s%3D%0A
https://downloads.intercomcdn.com/i/o/1102962044/67954a5581d649638c9bfb08/image.png?expires=1724392800&signature=13330f53977ea57b9a22f69aadc2adcb8df1b1d5ce5f45886aa75db828f4c6ff&req=dSEnFMB4n4FbXfMW3nq%2Bgc%2FFbAUK4VCmdP2SdDKyRgnUVE6nHEF0zPU9qsDY%0ActpA7lcQ2VFVwc8mkSrhIGJEx0o%3D%0A
https://downloads.intercomcdn.com/i/o/1102984164/0e59b4730cf3a51a286250e0/image.png?expires=1724392800&signature=a2b7d6ca17d72a3e91abef243631032c0349dbbdda8a3e248f4dc1f39a83594a&req=dSEnFMB2mYBZXfMW3nq%2Bgd0HBHXFLdyklyKszQdvyR5o%2FNNi%2F4k7QxCFb9Ni%0A5J4TM7g1FUAkzp%2Fnkhxk04X%2FiuI%3D%0A

 20 | P a g e

Step 14 - Select the Profile of the Username you will be defining in SQL-Sales as the nominated

OAuth Username (the Integration Username).

Click Save

Your Profile will be listed as below:

Alternatively, from directly within the given Profile tick your created Connected App from there, it

has the same effect as the above. The below, in our example is the "System Administrator" Profile.

https://downloads.intercomcdn.com/i/o/1102986829/79fa8c5f1e2192eeb0ae7b00/image.png?expires=1724392800&signature=c0e2bc2cd053b4e5c35dd6aeda2d70fb7c429b14c42abc018ff40fed0d1a2da3&req=dSEnFMB2m4ldUPMW3nq%2BgevpPvn%2BWJwoAQza52LExFcVws%2FcD7T1f7TXa4qb%0A5q1nyDTxDgCkfv6tLDB2t43E7UM%3D%0A
https://downloads.intercomcdn.com/i/o/1102962044/67954a5581d649638c9bfb08/image.png?expires=1724392800&signature=13330f53977ea57b9a22f69aadc2adcb8df1b1d5ce5f45886aa75db828f4c6ff&req=dSEnFMB4n4FbXfMW3nq%2Bgc%2FFbAUK4VCmdP2SdDKyRgnUVE6nHEF0zPU9qsDY%0ActpA7lcQ2VFVwc8mkSrhIGJEx0o%3D%0A
https://downloads.intercomcdn.com/i/o/1102994869/28cf758d0bcaa08845e5caf5/image.png?expires=1724392800&signature=7c7db45e817501e1453aad60a28200974dc7486e1b637c2f37e4ca0ab258f892&req=dSEnFMB3mYlZUPMW3nq%2Bgd0kbzsofDoSuBRElRGb8c9k3YPmoC8zWzdLWjvS%0AbPpMeJhEasoHaV2WiQzr9PpsIWU%3D%0A
https://downloads.intercomcdn.com/i/o/1102990528/bc6ad2edaf7e10af99aa3096/image.png?expires=1724392800&signature=39d1ed7d2006176bf725b37393204c232e75329d89a15e8e44e5459e5a3d774d&req=dSEnFMB3nYRdUfMW3nq%2Bgc62v%2BS9LCZeVuSRVyJHxyEfRYBLrHM9Gjfm9bGX%0Au6R1NiR5dzVpieMP%2FsyBe8GlzUk%3D%0A

 21 | P a g e

Step 15 - Now return to the "App Manager"

For your Connected App, choose "View"

Step 16 - Click "Manage consumer Details"

Note, this will trigger a validation/security verification code request to your email

https://downloads.intercomcdn.com/i/o/1102997052/2816e0dc4d685d01f6f0229b/image.png?expires=1724392800&signature=86f3bdee40d7f61f895cbb34f7b5357239531ba5dd5fabc038146680b347afad&req=dSEnFMB3moFaW%2FMW3nq%2BgU5noSOV9fICsg1bG5llJFH8iCSg0sQs2Ay9nkHh%0Ayy7oU%2BP3bYjOZm84w5avuzNSfuc%3D%0A
https://downloads.intercomcdn.com/i/o/1102998255/ff02107a104d99c8212da54e/image.png?expires=1724392800&signature=0497392f3849764d615b55624949c6f14da41795ce63e7de64974c2066a2e46e&req=dSEnFMB3lYNaXPMW3nq%2BgYGbecfB2VbzGzQRsgI6KlyQb15WMOp2nsoob9Ql%0AOkn18ipBl96umhY0wDSapvymt84%3D%0A
https://downloads.intercomcdn.com/i/o/1103006736/8e4df3ccb4f050173f719a41/image.png?expires=1724392800&signature=1f4aa9a1b2edc51c58d68bd65c125c357faf389892ab2fcad565474d7c89f4cb&req=dSEnFcl%2Bm4ZcX%2FMW3nq%2BgXqbDduZcu6YPgYDs4cmhxodO%2BAq4ChHx%2BYSjVzy%0ASkAv7wvYw57LPNm0pSYpVvMaQyc%3D%0A

 22 | P a g e

Step 17 - Copy the Consumer Key

https://downloads.intercomcdn.com/i/o/1103008442/4997f61c8ae60cc524d955f1/image.png?expires=1724392800&signature=0ba494d5d0f93ae640b727cca82cd7867043467344c727369ad5c9bef567d51d&req=dSEnFcl%2BlYVbW%2FMW3nq%2BgRX2PDpwFBTLwkxZZLxxlUWjtO7QXsvTL1OKtKIY%0AIu8hip7XBGiqCqM%2FrrFXyEJHkh8%3D%0A
https://downloads.intercomcdn.com/i/o/1103010653/0b9fa3cab08221856d9a6a95/image.png?expires=1724392800&signature=cfaa09c54ee4d02892b8e2acc8d367572cc76a0a6349e42ab022912365126db2&req=dSEnFcl%2FnYdaWvMW3nq%2BgWNphGhIVWhBpUCdeMXpuAAhTkDbjJCzoK0qMRh3%0AFlIqtZ8CmOkTZk2BbAIhi%2FuSucw%3D%0A

 23 | P a g e

Step 18 - In the SQL-Sales Environment configuration, select the "OAuth 2.0 (REST api)" connection

setting and enter the following:

Input field Notes

Integration Username

Enter the nominated username which will serve as the Integration User,

this user's Profile must have been added in Steps 13-14 "Manage

Profile"

Custom Connected

App
This is the Name of your Connected App

Consumer Key Paste here the copied Consumer Key from the prior step 17

Step 19 - We'll now create the self signed certificate as mentioned in step 2.

Enter an expiry term in days (maximum is 365 days).

Click "Create Certificate"

Click "Yes" at the confirmation prompt below:

 24 | P a g e

Step 20 - SQL-Sales will have generated a public self signed certificate for you to copy to your

clipboard and save yourself as a .pem file to a location of your choosing. SQL-Sales will not hold or

retain this beyond passing to the clipboard, as below.

Next steps:

1. Save as a suitably named file with a .pem extension

2. Save this to a key vault / safe location that you define and have control of

3. And will be able to browse to in the next section when you upload to Salesforce

Paste to a suitable text editor (for example notepad) and save as-is with no editing whatsoever.

https://downloads.intercomcdn.com/i/o/1103020430/53080f55bca38311a9cb2215/image.png?expires=1724392800&signature=cce2c475ec5bd4f00773e4b68d3f6829d132b9ed015b649eb59b2ded47d1ec07&req=dSEnFcl8nYVcWfMW3nq%2BgXPDHJGoaJ%2F0JUfmUM1CF%2F5qdTQbb2I%2BK%2BvYVQ4e%0AdxqUTyB5PtKfbMXqoyDwaQOGG54%3D%0A
https://downloads.intercomcdn.com/i/o/1103022263/05d102b289545ad348ecab42/image.png?expires=1724392800&signature=829b104e8d3b49fb36344b4aaf49542bb377b53f46dcae2002f506b54bfff2c7&req=dSEnFcl8n4NZWvMW3nq%2BgShKiUPoVN6uqRM41bRt0ucfBCtVkhw4dxdE0%2BoY%0AyiVPl%2BnBJWDHC0P7gHqE%2BiBsgOQ%3D%0A

 25 | P a g e

Step 21 - Edit your Connected App

App Manager >> [Your Connected App] >> "Edit"

Tick "Use digital signatures"

Click "Choose File"

Browse to your .pem file, in the example here "demo.pem"

https://downloads.intercomcdn.com/i/o/1103032618/0aafea574432b5c30af9424a/image.png?expires=1724392800&signature=5e6c9066c16aa143574f910e696757b56979c9f22e4a90a43f69ed2cefa3cf8a&req=dSEnFcl9n4deUfMW3nq%2BgZ0P9hU4a2gM82kIwadlycujv3fQ7BUkE6Vw7zrL%0AuRaIgGfAf8MK9jaBM5YJzPLud6M%3D%0A
https://downloads.intercomcdn.com/i/o/1103031188/4698d11c41b77e633d1f3dd2/image.png?expires=1724392800&signature=33e560e0363baf61f5553b34d18c76b7db1b92cad7d4ecf243afea821ded0784&req=dSEnFcl9nIBXUfMW3nq%2Bgd6PvyG6zUmRdUEromemYYo4uJD81fGZBOXkW3k8%0AFOjW0at45PNYEUscOdOxqKxdV58%3D%0A

 26 | P a g e

Click Save

Salesforce informs there can be a delay of up to 10 minutes for the certificate to take effect, in reality

this is typically instantly usable, click "Continue" at the prompt below:

Step 22 - Finally, we can test in SQL-Sales

https://downloads.intercomcdn.com/i/o/1103034126/83f256f25446171f98c5bcac/image.png?expires=1724392800&signature=6315fd379a9b3e0d77464be676dd417045cb595e6d6843252834150a3dd20d13&req=dSEnFcl9mYBdX%2FMW3nq%2BgaLtGLL9n5ST2O5gArGh%2BiSRORbR%2FMR9DpAZRm6b%0APug73a0W3kAalvVeki8fN4h0h18%3D%0A
https://downloads.intercomcdn.com/i/o/1102962044/67954a5581d649638c9bfb08/image.png?expires=1724392800&signature=13330f53977ea57b9a22f69aadc2adcb8df1b1d5ce5f45886aa75db828f4c6ff&req=dSEnFMB4n4FbXfMW3nq%2Bgc%2FFbAUK4VCmdP2SdDKyRgnUVE6nHEF0zPU9qsDY%0ActpA7lcQ2VFVwc8mkSrhIGJEx0o%3D%0A
https://downloads.intercomcdn.com/i/o/1103034732/dba89be4b68236e3128d45de/image.png?expires=1724392800&signature=f2f01f1fe625efe88139a6653d0d1f47eaabb3d5c6707687b445749453022efb&req=dSEnFcl9mYZcW%2FMW3nq%2BgTc%2BVHaXiPr7R6oo%2FmlsCRLHVfriCYGwgdPnKJzf%0AdhGU2nhpd7l%2FUCDCLdeyFMy2FY4%3D%0A
https://downloads.intercomcdn.com/i/o/1103039357/ea2c3c5e2e654fadb9d3daf2/image.png?expires=1724392800&signature=b51046987edf319ca90b68b31aa94c5b846f5c29dee8c68a264d6a12d99d7b57&req=dSEnFcl9lIJaXvMW3nq%2BgVrQzTHuEDshmqV3PPI6nHOA%2BB%2FL2%2Ft%2BVZxP43E8%0ANj%2B6Mfwoxeahs9ImJQ9krlXcpX4%3D%0A
https://downloads.intercomcdn.com/i/o/1103038623/dda51fc2ca9e409d182cda61/image.png?expires=1724392800&signature=53c385e0b75b8196e71d0c747feca50228f5ace7d6f697fbf6bf12c40e7d7b69&req=dSEnFcl9lYddWvMW3nq%2BgfeNKYm39c9uBP7zGgGnQga5Y%2BW9KOTPqB3VxgVF%0AqV%2F6kQ%2BsENIPJlCJKkKYyQcyvQI%3D%0A
https://downloads.intercomcdn.com/i/o/1103037908/bed5b1ddeeb9076354845287/image.png?expires=1724392800&signature=99ce927f5a4a8f951ea1585c1309e0108c1f211f87b263acb765b20f47e3861d&req=dSEnFcl9mohfUfMW3nq%2BgZmZ5YGqieQrOGg5sb7CFhO8oq%2FI7YR8uiHFFih%2B%0AkHhB4mPFVPZhv348ZvOjDEgMOM8%3D%0A

 27 | P a g e

MANAGED PACKAGE
INSTALLATION
Install the Salesforce approved package from the Production or Sandbox by visiting the

AppExchange. Search for Installed Packages and click on the “Visit AppExchange” button, as below:

 28 | P a g e

Note, “Try It Free” will only support a sandbox installation. Whereas “Get It Now” will install to your
Production Org. Both methods are a free 30 day trial.

 29 | P a g e

 30 | P a g e

“Get It Now” for the Production install is also a 30 day free trial.

 31 | P a g e

 32 | P a g e

 33 | P a g e

Installing the Package

Choose "Install for Admins Only"

"View components"

The "SQLSalesUndeleteService" Apex Class (and associated Test Class) provides a custom REST api,

supporting undelete functionality. This allows a full range of data operations via the OAuth 2.0

“Get It Now” for the Production install is still a 30 day free trial. As below, the package will be
installed with a Status = “Trial”. If you click in to “Manage Licenses” you’ll see the Expiration Date.

Note, once the package is installed, you can immediately start using SQL-Sales by connecting in
the Configuration tool with Username-Password (SOAP or REST api). However if you wish to
connect with OAuth 2.0 (REST api) you will need to make the configuration changes in the steps
that follow.

 34 | P a g e

connection (as undelete is not supported by default by the Salesforce REST api, only the SOAP api

supports this by default).

The "SQL Sales" Connected App handles the connection itself (from the installed SQL-Sales Daemon).

One you get to “Installation Complete!” - if you click on "View on another browser", you’ll be

directed to the Managed Package help pages (the same information you’re reading here) previewed

in the frame below.

Finally Click "Done"

 35 | P a g e

Installed Packages - click onto "SQL-Sales"

View Components: Click "View Components" to see what you have installed

 36 | P a g e

As previously described - the package consists of a Connected App and an Apex class.

 37 | P a g e

SQL Sales Connected App Configuration

Note, once the package is installed, you can immediately start using SQL-Sales by connecting

in the Configuration tool with Username-Password (SOAP or REST api).

However if you wish to connect with OAuth 2.0 (REST api) you will need to make some post

installation configuration changes.

From Setup, type "app" and navigate to Apps >> App Manager.

You will have an entry for "SQL Sales" Connected (Managed).

Click "Manage"

Click "Edit Policies"

 38 | P a g e

OAuth Policies

Step 1

By default your installed connected app will have Permitted Users set to: "All users may self-

authorize"

Change Permitted Users to: "Admin approved users are pre-authorized"

Click OK on the confirmation prompt below:

Step 2

By default "Issue JSON Web token (JWT)-based access tokens is not enabled

Tick the checkbox and leave the default token timeout at 30 Minutes (SQL-Sales at run time will

validate this setting is 30 minutes).

Click Save

https://downloads.intercomcdn.com/i/o/1112475160/b159c2ee483f694f87d1d440/image.png?expires=1724392800&signature=b528de4b345303aa55d01bf51633829ec83d965980191266b2bf37d7d34d807a&req=dSEmFM15mIBZWfMW3nq%2BgWLpGPSOpJz0j0c6IX1P2rcAAh%2FeKBGgsqApi01T%0AzZuU50VAy9RzjwnNDZ5%2BhqmJ7HQ%3D%0A
https://downloads.intercomcdn.com/i/o/1112476650/305b6eb69432adc01d0287c9/image.png?expires=1724392800&signature=d6001a4d382254bbd4adba6a85e195fa7b1be58dbcae282b66ebb41044aca527&req=dSEmFM15m4daWfMW3nq%2BgZTX4WSft9B79gF6KDvN%2FuiV8AcyBtgXrWp6vsmP%0A8At9BCcm1iBGUkIPP1nH1r58cUc%3D%0A
https://downloads.intercomcdn.com/i/o/1112477802/bae4fa19c2df54362142f3ad/image.png?expires=1724392800&signature=505d1e8254ddddbd05a42e5b31b0df0a13bc8179223064baaf052a12a0ac3a30&req=dSEmFM15molfW%2FMW3nq%2BgcK3uo5CIeQDMsny58TFtcGCDLGfCh%2FPk7yUtRje%0AumECWiiDa2WEbAvMMOlgWjwV8oU%3D%0A
https://downloads.intercomcdn.com/i/o/1112478810/0d23d3bcf3d4ce3d1d9e1fba/image.png?expires=1724392800&signature=5b4b6935f4a9ed29c0f3097c60c6b086d450deb17cd2f45133d35b50fc01b3d0&req=dSEmFM15lYleWfMW3nq%2BgcP8CpWuhsxtH%2FUhMAsQqEaImF8shflWlWzE73jv%0AHShaB%2BgPmvk%2BbNWn54fhEuMeC%2Fw%3D%0A

 39 | P a g e

Step 3

Back on the SQL Sales Connected App Detail page, click on "Manage Profiles"

Click "System Administrator"

 40 | P a g e

For completeness and general awareness, you can tick the "SQL Sales" checkbox in the Connected

App Access section of the System Administrator Profile page.

Either method will result in the below, on the SQL Sales Connected App detail page:

Step 4

Finally, you must now follow the instructions here to setup your connection for the given Salesforce

instance you wish to connect to (in our example here, the "demo" sandbox)

https://intercom.help/sql-sales/en/articles/9518676-connecting-with-oauth-2-0
https://downloads.intercomcdn.com/i/o/1112481876/b88ba640453fd9bc33d4b3e5/image.png?expires=1724392800&signature=b4aab4749aa515ae1d243b220ed88ef752fdebe3834b438a583f1b65f291cd62&req=dSEmFM12nIlYX%2FMW3nq%2BgZFq5jbgJFx9d7HZ59308dn58rwMiDdZuqr7DMoY%0Afjz6fJm6s8KtbawnEOzEcGm1SRQ%3D%0A

 41 | P a g e

DATABASE ENABLING
ss_EnableDatabase.sql
Provided alongside the SQLSalesInstaller.exe, the “enabling” script ss_EnableDatabase.sql will fully

deploy the required SQL Server components (stored procedures and functions).

ss_EnableDatabase.sql is installed to the exe install location - typically to the default C:\Program

Files\SQLSales, hence: C:\Program Files\SQLSales\ss_EnableDatabase.sql

Open and compile to your chosen database, to “enable” that database for use with SQL Sales.

The following are deployed to your target (schema) and database by running the enabling script, in

the cases of some tables such as ss_Log, these will be auto-deployed on first running certain stored

procedures:

Object Type Purpose

ss_Admin Stored Procedure Primarily to control the Daemon from your SSMS client

ss_Delta Stored Procedure Delta Replication of Salesforce data

ss_DeltaAll Stored Procedure Call ss_Delta in bulk for multiple Objects

ss_Handler Stored Procedure Generic process used by most stored procedure calls to

interact with the Handler application

ss_Loader Stored Procedure Allows bulk loads to Salesforce via the SOAP and Bulk

APIs (Version 1 & 2)

ss_LoaderChecks Stored Procedure Supports ss_Loader

ss_Logger Stored Procedure Controls the logging to ss_Log_Working

ss_MetaField Stored Procedure Returns Field metadata

ss_MetaObject Stored Procedure Returns Object metadata

ss_MetaPick Stored Procedure Returns Picklist metadata

Ss_ObjectLog Stored Procedure Controls the logging to ss_Log

ss_PullChecks Stored Procedure Supports ss_Replica & ss_Delta

ss_Replica Stored Procedure Full Replication of Salesforce data

ss_ReplicaAll Stored Procedure Call ss_Replica in bulk for multiple Objects

ss_UserInfo Stored Procedure Miscellaneous user information for a given Environment

ss_AutoReplica Table Controls if a given Object is automatically fully

replicated when calling ss_DeltaAll

ss_BulkAPILog Table Log table used by ss_Loader and the Bulk API

Note, SQL Sales requires that xp_cmdshell is enabled on your SQL Server. If it is not, the
enabling script will identify that and provide a suggested script to run, to alter your system
configuration settings.

 42 | P a g e

Object Type Purpose

ss_Log Table Log table for all SQL Sales Delta and Full replications

for a given Salesforce object

ss_Log_Working Table Finer logging detail to ss_Log

ss_ObjectExclusion Table Control which objects are excluded from ss_ReplicaAll

and ss_DeltaAll

ss_ObjectInclusion Table Control which objects are included from ss_ReplicaAll

and ss_DeltaAll

ss_SysField Table Output from ss_MetaField

ss_SysObject Table Output from ss_MetaObject

ss_SysPicklist Table Output from ss_MetaPicklist

ss_System Table Contains the deployed SQL Sales Version

ss_18 Function Helper function to generate the full 18 character case

insensitive Salesforce Id from a 15 character case

sensitive Id.

ss_LoaderDefinition Function Supports ss_Loader

ss_SchemaDefinition Function Supports ss_Replica & ss_Delta

ss_System Table Contains the deployed SQL Sales Version and general

future use

ss_Log Table Log table for all SQL-Sales Delta and Full replications

for a given Salesforce object (will only be auto-

generated on the first ss_Replica run)

ss_Log_Working Table Log table for all stored procedures. Self-maintained

(any entries > 7 days old are auto-purged)

ss_BulkAPILog Table Log table used by ss_Loader and the Bulk API (will only

be auto-generated on the first ss_Loader run involving

the Bulk API)

ss_ObjectExclusion Table Referenced by ss_ReplicaAll and ss_DeltaAll, add any

objects into here to have them excluded

ss_ObjectInclusion Table Referenced by ss_ReplicaAll and ss_DeltaAll, add any

objects into here to form an inclusion-only set of

objects (any object not in here will be excluded from

scope)

 43 | P a g e

Full Schema isolation support
SQL Sales can run in separate schema on the same databases, which can be helpful for certain use

cases or where for example you can only operate in one database and need to have different

sandboxes replicated to different schemas, even if necessary having Production replication in their

own “prod” schema (although generally speaking as best practise we would advise to physically

separate a Production replication to its own dedicated database and ideally to its own SQL Server),

that said we recognise some customers have to operate within very restricted SQL environments,

which is why full schema isolation can be a real benefit.

Setup

When enabling a given database, simply change the highlighted code block, specifying your required

schema (unless the default dbo schema is required in which case do nothing). Now execute the

script.

Working with schemas

As with standard SQL Server, you do not need to specify the dbo schema when calling stored

procedures or selecting from tables, if that is the schema you specified on your given installation

(which is the usual default), hence using ss_Replica as an example:

exec ss_Replica 'DEMO', 'Account'

select * from Account

you can, if you prefer also run as

exec dbo.ss_Replica 'DEMO', 'Account'

select * from dbo.Account

 44 | P a g e

Let’s say you have enabled with schema “uat” (for a User Acceptance Testing sandbox) and a second

schema called “dev”(for a Development sandbox), you can run the below:

exec uat.ss_Replica 'UAT_SBOX', 'Account'

exec dev.ss_Replica 'DEV_SBOX', 'Account'

and thereby create physically separate replicas in tables:

uat.Account

dev.Account

select * from uat.Account

select * from dev.Account

 45 | P a g e

FULL REPLICATION
ss_Replica
ss_Replica is a Stored Procedure you execute within your enabled database.

Prerequisites

• A working Environment and the SQL Sales Daemon is running (see Environment Setup)

• SQL Server

• Compiled stored procedure ss_Replica (see Database Enabling)

ss_Log replication log

Replication is logged in table “ss_Log” which is automatically created and maintained for all

ss_Replica runs and the same for ss_Delta runs (see next section).

Field Purpose

ReplicaName The Salesforce object name or a Custom table name if one has been

specified, created as a replica table in the given enabled Database

ObjectName Source Salesforce Object of this replication log (will be the same as

ReplicaName if no customisation has occurred with the “Table:”

switch

CustomReplica Indicates if the Replica is Custom (i.e. not a basic replication of a

Salesforce Object Name but ReplicaName is a custom table name

TableCreatedDate Serves no functional purpose, is for information purposes only

MaxSystemDate This is how the ss_Delta process determines how to delta replicate

LogDate Last log datetime

TopRow Captures any Top commands, for example 'Account:Top100'

Subset Captures any Column Subset commands, for example

'Subset(Name,BillingCountry)'

Status Possible values:

FAILURE (indicates a failure has occurred, see Detail field)

FULL (indicates a Full replication occurred)

DELTA (indicates a partial replication occurred, via ss_Delta)

WhereInput Captures any Where clause commands injected into the replication

Detail Success or Failure detail

Note, the table is created within the schema to which you are running ss_Replica, hence if you
ran with uat.ss_Replica, the resultant entry for the given object will be to table uat.ss_Log.

https://intercom.help/sql-sales/en/articles/8048146-environment-setup
https://intercom.help/sql-sales/en/articles/8050476-deploying

 46 | P a g e

ss_Log_Working detailed replication log

For more granular detail of every replication run, each step is logged in “ss_Log_Working” which can

be helpful in monitoring longer running processes of millions of rows, as the BULK connection

method will deliver the data payload in chunks, which are logged and so can be monitored to check

progress.

Field Purpose

Environment The specified Salesforce Environment, defined in the SQL Sales

Configuration tool

Task “ss_Replica”

ObjectName Source Salesforce Object of this replication log (will be the same as

ReplicaName if no customisation has occurred with the “Table:”

switch

PreProcessPoint The process which is about to be started

Detail1 The Salesforce object name or a Custom table name if one has been

specified, created as a replica table in the given enabled Database

Detail2 The contents of parameter @Special1

Detail3 The contents of parameter @Special2

Detail4 Logs the current Chunk, if a Salesforce Id, this is the latest Id the

process has got to

Parameters

Parameter Purpose
@Env SQL Sales Environment Name

@ObjectName Salesforce Object Name (for example Account)

Can be accompanied with :TopXXX where XXX is a number

exec ss_Replica 'DEMO', 'Account:Top10’

Can have an “_All” suffix to return soft deleted and/or archived data

exec ss_Replica 'DEMO', 'Account_All'

@Special1 Optional, in simple usage, null

Subset(field1,field2,field3) – where field1 etc are Salesforce api

fieldnames for the given object. For example in the case of the object

being Account, this could be:

Subset(Name,Phone,BillingCity)

Table:<custom table name> - for example 'Table:OppTest'

No special delimiter is required between Subset(x,y,z) and Table:xxx, for

example leave nothing or a space:

 47 | P a g e

Parameter Purpose
‘Subset(Name,Phone,BillingCity) Table:AccountTest'

LinkedEntityId

Only relevant if you are replicating Object ‘ContentDocumentLink’ see

the relevant detail in this section, for example

Exec ss_Replica ‘demo’, ‘ContentDocumentLink’,’LinkedEntityId’,’a,b,c,d’

(where ‘a,b,c,d’ is a comma delimited list of up to 200 Entity Ids for

example Account Ids).

ContentDocumentId

Only relevant if you are replicating Object ‘ContentDocumentLink’ see

the relevant detail in this section, for example

Exec ss_Replica ‘demo’,

‘ContentDocumentLink’,’ContentDocumentId’,’a,b,c,d’

(where ‘a,b,c,d’ is a comma delimited list of up to 200 ContentDocument

Ids)

@Special2 Optional, in simple usage, null

Where <SOQL> - for example ‘Where StageName = ‘’Closed Won’’’

If @Special1 = LinkedEntityId

Provide a comma delimited string of up to 200 Entity Id (for example

200 Account Ids)

If @Special1 = ContentDocumentId

Provide a comma delimited string of up to 200 ContentDocumentIds

 48 | P a g e

Simple Example

exec ss_Replica 'DEMO', 'Account'

Specifying Batchsize

By default ss_Replica will use a batchsize of 2000 (the maximum possible via the Salesforce SOAP

api). Should you wish to use a smaller batchsize, specify this by passing in the custom batchsize

when passing in the Objectname as below:

exec ss_Replica 'DEMO', 'Account(25)'

Retrieving soft deleted & archived data (Query All)

By default ss_Replica will automatically exclude IsDeleted = 1/True records as well as isArchived =

1/True. To include these records, append “_All” to your specified Objectname as below, note

ss_Delta does not support the “_All” switch as it is not possible to reliably validate if a local IsDeleted

= 1/True has been auto-purged from the Salesforce recyclebin.

exec ss_Replica 'DEMO', 'Account_All'

Quick Top check

This doesn’t replicate back to the given object table name as it by default outputs as a resultset to

the management studio results pane, to facilitate quick checks of data and metadata. However the

same data is also present in a <ObjectName> + _Check table, for example Account_Check. Note

(see following documentation) – combining Top with a custom replica table will result in the Top

number of output rows being written to the specified SQL replica table as opposed to it being an

instruction for the output to the screen only. Output to screen:

exec ss_Replica 'DEMO', 'Account:Top5'

Output to the specified custom replica table:

exec ss_Replica 'DEMO', 'Account:Top5',’Table:AccountTopTest’

 49 | P a g e

Subset Example

exec ss_Replica 'DEMO', 'Account','Subset(Name,BillingCountry)'

Valid fields (i.e. that exist on the specified object and for which you have permission to query, will

only be returned, although note some basic fields to support the replication logic to function

correctly will be imposed (for example Id, isDeleted; SystemModStamp).

Note, for larger sets of subset fields, you may prefer to input in a list form, example shown below,

which is an acceptable input method to the @Special1 input parameter:

exec ss_Replica 'DEMO', 'Opportunity'

,'Subset(

AccountId

,Amount

,CampaignId

,CloseDate

,Name

,NextStep

,OrderNumber__c

,OwnerId

,Pricebook2Id

,Probability

,StageName

,SystemModstamp

,TotalOpportunityQuantity

,TrackingNumber__c

,Type)'

Or

exec ss_Replica 'DEMO', 'Opportunity'

,'Subset(

AccountId,

Amount,

CampaignId,

CloseDate,

Name,

NextStep,

OrderNumber__c,

OwnerId,

Pricebook2Id,

Probability,

StageName,

SystemModstamp,

TotalOpportunityQuantity,

TrackingNumber__c,

Type)'

 50 | P a g e

Combined Subset, Batchsize and Top check example

exec ss_Replica 'DEMO', 'Account(25):Top100','Subset(Name,BillingCountry)'

Custom Replica Example

exec ss_Replica 'DEMO', 'Opportunity','Table:OppTest'

In this example, Salesforce Opportunity data will be replicated to the “OppTest” SQL table. This can

be maintained with ss_Delta if required, entirely independently of any potential “Opportunity” replica

exec ss_Delta 'DEMO', 'Opportunity', null, 'Table:OppTest'

existing in the same deployed schema in your given Database.

For example running

exec ss_Replica 'DEMO', 'Opportunity','Table:OppTest'

exec ss_Replica 'DEMO', 'Opportunity'

will define two separate replica tables of Salesforce Opportunity data, one called Opportunity, the

other called OppTest, which can both be maintained via ss_Delta, provided the “Table:” switch is

applied consistently:

exec ss_Delta 'DEMO', 'Opportunity', null, 'Table:OppTest'

exec ss_Delta 'DEMO', 'Opportunity'

Combining Top with Custom Replica

If Top is combined with a custom replica instruction, the limit of rows is applied to the custom

created replica object and therefore there is no _check table output to the SSMS results pane.

 51 | P a g e

Where Clause Example

exec ss_Replica 'DEMO', 'Opportunity','Table:OppTest','Where StageName = ''Closed Won'''

Note, syntax must be in SOQL format. In this example, a where clause has been added, which will be

applied to the replica and can be applied to ss_Delta. It is entirely optional to apply this to a custom

table or against the full SF object name .

exec ss_Delta 'DEMO', 'Opportunity', null, 'Table:OppTest','Where StageName = ''Closed Won'''

In this example, a where clause has been added to the base Salesforce object replica (i.e. no custom

table usage), the clause Type = New Customer has been passed in.

exec ss_Replica 'DEMO', 'Opportunity',null,'Where Type = ''New Customer'''

exec ss_Delta 'DEMO', 'Opportunity',null,null,'Where Type = ''New Customer'''

Note, any custom Replica created with a Where clause must continue to have that same
identical Where clause applied any subsequent ss_Delta calls, otherwise the Delta logic will be
compromised as there will be no consistency between the scope of the original ss_Replica and
the delta data retrievals via ss_Delta.

 52 | P a g e

Combining Top with Custom Replica and where clause

exec ss_Replica 'DEMO', 'Opportunity:Top20','Table:OppTest','Where StageName = ''Closed Won'''

Combining Top with Field Subset, Custom Replica and where clause

exec ss_Replica 'DEMO', 'Opportunity:Top20','Subset(Name,Type,StageName) Table:OppTest','Where

StageName = ''Closed Won'''

ContentDocumentLink

The Salesforce Content Model object acts as a junction between a Document and the object (for

example Opportunity) that has the Document linked to it. It allows multiple different objects to be

linked to the same Document.

Field Purpose

LinkedEntityId Object Id (for example Account.Id; Opportunity.Id) etc

ContentDocumentId Document Id

The Salesforce api limits the retrieving of ContentDocumentLink records to either a maximum of 200

LinkedEntityId or 200 ContentDocumentId. For this reason replicating ContentDocumentLink can be

challenging, however SQL-Sales is able to fully return all available records en masse using the

conventional ss_Replica command:

exec ss_Replica 'DEMO', 'ContentDocumentLink'

if specific subsets of either LinkedEntityId or ContentDocumentId are required (in batches of 200),

ss_Replica allows you to pass in a comma separated string of up to 200 Salesforce 18 character Ids

into optional parameter @Special2. @Special1 is how you indicate if you are passing in

LinkedEntityId Ids or ContentDocumentId Ids. Note this is supported purely as a helper shortcut to

retrieve via the Salesforce api limits on querying ContentDocumentLink.

Example of usage (LinkedEntityId)

@Special1 in this example is 'LinkedEntityId'

@Special2 in this example is the variable [@Ids] which has the comma separated Ids for example up

to 200 Opportunity Ids

 53 | P a g e

exec ss_Replica 'DEMO', 'ContentDocumentLink','LinkedEntityId',@Ids

As a helper, below are three suggested methods by which you can create a comma separated string

for which can be passed into the variable @Ids

Note, in the below examples of 200 Account Ids, Account has been prior replicated

Option1 (COALESCE)

DECLARE @Ids NVARCHAR(4000)

SELECT @Ids = COALESCE(@Ids + ',', '') + CAST(Id AS VARCHAR)

FROM (SELECT TOP 200 Id FROM Account) AS Top200

exec ss_Replica 'DEMO', 'ContentDocumentLink','LinkedEntityId',@Ids

Option2 (STUFF | XML PATH)

DECLARE @Ids NVARCHAR(4000)

SELECT @Ids = (STUFF((SELECT TOP 200 ',' + CAST(Id AS VARCHAR)

FROM Account ORDER BY Id FOR XML PATH('')), 1, 1, ''))

exec ss_Replica 'DEMO', 'ContentDocumentLink','LinkedEntityId',@Ids

Option3 (STRING_AGG)

DECLARE @Ids NVARCHAR(4000)

SELECT @Ids = (SELECT STRING_AGG(CAST(Id AS VARCHAR), ',') WITHIN GROUP (ORDER BY Id) AS

CommaSeparatedIds

FROM (SELECT TOP 200 Id FROM Account ORDER BY Id) AS Top200)

exec ss_Replica 'DEMO', 'ContentDocumentLink','LinkedEntityId',@Ids

 54 | P a g e

Example of usage (ContentDocumentId)

@Special1 in this example is 'ContentDocumentId'

@Special2 in this example is the variable [@Ids] which has the comma separated Ids for example up

to 200 Opportunity Ids

exec ss_Replica 'DEMO', 'ContentDocumentLink','ContentDocumentId',@Ids

As a helper, below are three suggested methods by which you can create a comma separated string

for which can be passed into the variable @Ids

Note, in the below examples of 200 Document Ids, ContentVersion has been prior replicated

Option1 (COALESCE)

DECLARE @Ids NVARCHAR(4000)

SELECT @Ids = COALESCE(@Ids + ',', '') + CAST(ContentDocumentId AS NCHAR(18))

FROM (SELECT DISTINCT TOP 200 ContentDocumentId FROM ContentVersion) AS Top200

exec ss_Replica 'DEMO', 'ContentDocumentLink','ContentDocumentId',@Ids

Option2 (STUFF | XML PATH)

DECLARE @Ids NVARCHAR(4000)

SELECT @Ids = (STUFF((SELECT TOP 200 ',' + CAST(ContentDocumentId AS NCHAR(18))

FROM ContentVersion ORDER BY ContentDocumentId FOR XML PATH('')), 1, 1, ''))

exec ss_Replica 'DEMO', 'ContentDocumentLink','ContentDocumentId',@Ids

Option3 (STRING_AGG)

DECLARE @Ids NVARCHAR(4000)

SELECT @Ids = (SELECT STRING_AGG(CAST(ContentDocumentId AS NCHAR(18)), ',') WITHIN GROUP

(ORDER BY ContentDocumentId) AS CommaSeparatedIds

FROM (SELECT TOP 200 ContentDocumentId FROM ContentVersion ORDER BY ContentDocumentId) AS Top200)

exec ss_Replica 'DEMO', 'ContentDocumentLink','ContentDocumentId',@Ids

 55 | P a g e

ss_ReplicaAll
ss_ReplicaAll allows you to run ss_Replica in bulk.

Simple Example

exec ss_ReplicaAll 'DEMO'

With @ObjectNameFrom

exec ss_ReplicaAll 'DEMO', 'Opportunity'

This will commence the bulk ss_Replica replication from the Object immediately following

Opportunity, which could be OpportunityCompetitor if there is no other custom or standard object

with a name closer to Opportunity, sorting alphabetically. This is useful if a prior run of ss_ReplicaAll

has failed for whatever reason and you wish to re-commence from the point of failure.

Parameters

Parameter Purpose
@Env SQL Sales Environment Name

@ObjectNameFrom This will commence the bulk ss_Replica replication from the Object

immediately following the one passed in via @ObjectNameFrom. This is

useful if a prior run of ss_ReplicaAll has failed for whatever reason and

you wish to re-commence from the point of failure.

 56 | P a g e

ss_ObjectInclusion inclusion table

Field Purpose

ObjectName Definition of Objects you wish to include in each ss_ReplicaAll run.

Only Objects contained in this table will be considered in scope.

Accompanying table ss_ObjectExclusion will additionally be

referenced, i.e. Objects within will be ignored.

ss_ObjectInclusion exclusion table

Field Purpose

ObjectName Add any Objects in this table to have them excluded from each

ss_ReplicaAll run. On deployment (ss_EnableDatabase) a number of

known problem Objects are included in this table along with their

API Response Error Msg and Codes, for general reference.

It is a matter of choice whether you specify an Inclusion set (via

ss_ObjectInclusion) or exclude via this table. Generally, only a

relatively small number of Salesforce objects are required to

maintain a working replication database and hence

ss_ObjectInclusion is more appropriate, or even a hard coded list of

ss_Delta commands for each required Object, for example:

ss_Replica ‘DEMO’, ‘Account’

ss_replica ‘DEMO’, ‘AccountHistory’

ss_replica ‘DEMO’, ‘Opportunity’

Which is run via a SQL Agent Job or similar.

Running with no entries in this table but some entries in

ss_ObjectExclusion would be more appropriate, if you wanted to

automatically take an entire backup of your Salesforce Org, for

example.

ErrorMsg Salesforce API Response Error Msg

ErrorCode Salesforce API Response Error code

 57 | P a g e

DELTA REPLICATION
ss_Delta
ss_Delta is a Stored Procedure you execute within your enabled database.

Prerequisites

• A working Environment and the SQL Sales Daemon is running (see Environment Setup)

• SQL Server

• Compiled stored procedure ss_Delta (see Database Enabling)

ss_Log replication log

Replication is logged in table “ss_Log” which is automatically initially created by a prior ss_Replica

runs and maintained for all subsequent ss_Delta runs.

Field Purpose

ReplicaName The Salesforce object name or a Custom table name if one has been

specified, created as a replica table in the given enabled Database

ObjectName Source Salesforce Object of this replication log (will be the same as

ReplicaName if no customisation has occurred with the “Table:”

switch

CustomReplica Indicates if the Replica is Custom (i.e. not a basic replication of a

Salesforce Object Name but ReplicaName is a custom table name

TableCreatedDate Serves no functional purpose, is for information purposes only

MaxSystemDate This is how the ss_Delta process determines how to delta replicate

LogDate Last log datetime

TopRow Captures any Top commands, for example 'Account:Top100'

Subset Captures any Column Subset commands, for example

'Subset(Name,BillingCountry)'

Status Possible values:

FAILURE (indicates a failure has occurred, see Detail field)

FULL (indicates a Full replication occurred, via ss_Replica)

DELTA (indicates a partial replication occurred)

WhereInput Captures any Where clause commands injected into the replication

Detail Success or Failure detail

Note, the table is created within the schema to which you are running ss_Delta, hence if you ran
with uat.ss_Delta, the resultant entry for the given object will be to table uat.ss_Log.

https://intercom.help/sql-sales/en/articles/8048146-environment-setup
https://intercom.help/sql-sales/en/articles/8050476-deploying

 58 | P a g e

ss_Log_Working detailed replication log

For more granular detail of every replication run, each step is logged in “ss_Log_Working” which can

be helpful in monitoring longer running processes of millions of rows although for ss_Delta runs that

is a less common scenario, unless significant changes have occured on the given Salesforce Object –

if so it may be more efficient in that situation to run ss_Replica. The BULK connection method will

deliver the data payload in chunks, which are logged and so can be monitored to check progress.

Field Purpose

Environment The specified Salesforce Environment, defined in the SQL Sales

Configuration tool

Task “ss_Delta”

ObjectName Source Salesforce Object of this replication log (will be the same as

ReplicaName if no customisation has occurred with the “Table:”

switch

PreProcessPoint The process which is about to be started

Detail1 The contents of parameter @Special1

Detail2 The contents of parameter @Special2

Detail3 The contents of parameter @AutoReplica

Detail4 Logs the current Chunk, if a Salesforce Id, this is the latest Id the

process has got to

Note:

1. The table is created within the schema to which you are running ss_Delta, hence if you ran

with uat.ss_Delta, the resultant entry for the given object will be to table uat.ss_Log /

uat.ss_Log_Working.

2. ss_Delta will not run if no prior entry exists in the ss_Log table (unless ‘Yes’ was passed to

parameter @AutoReplica).

3. If an entry does exist in the ss_Log table but the last run was greater than 7 days ago,

ss_Delta will not run, however if input parameter @AutoReplica = Yes then in this event, the

ss_Delta run will failover to running ss_Replica, passing in the same input parameters as

provided in the ss_Delta execution.

 59 | P a g e

Parameters

Parameter Purpose
@Env SQL Sales Environment Name

@ObjectName Salesforce Object Name (for example Account)

Can be accompanied with :TopXXX where XXX is a number

exec ss_Delta 'DEMO', 'Account:Top10’

For example Account:Top10

@AutoReplica Full = if the given Salesforce object’s meta data definition is identified

to be different to the local definition (in the prior replicated SQL table), if

“Full” is set in this parameter then ss_Replica will automatically run to

fully replicate. If no value is passed, (by default the setting is “No”), this

instructs ss_Delta to ignore any potentially new fields or different field

definitions for existing fields.

Any Failure scenarios will also failover to a full replication via ss_Replica

if this parameter is set to “Full”, for example:

Objects that cannot technically be delta replicated

If the given Object has not yet been fully replicated via ss_Replica

If the entry in ss_Log is not present (yet the SQL table does exist)

If the last replication was > 7 days ago

@Special1 Optional, in simple usage, null

Options

Subset(field1,field2,field3) – where field1 etc are Salesforce api

fieldnames for the given object. For example in the case of the object

being Account, this could be:

Subset(Name,Phone,BillingCity)

Table:<custom table name> - for example 'Table:OppTest'

No special delimiter is required between Subset(x,y,z) and Table:xxx, for

example leave nothing or a space:

‘Subset(Name,Phone,BillingCity) Table:AccountTest'

@Special2 Optional, in simple usage, null

Where <SOQL> - for example ‘Where StageName = ‘’Closed Won’’’

 60 | P a g e

AutoReplica

Full = if the given Salesforce object’s meta data definition is identified to be different to the local

definition (in the prior replicated SQL table), if “Full” is set in this parameter then ss_Replica will

automatically run to fully replicate. If no value is passed, (by default the setting is “No”), this instructs

ss_Delta to ignore any potentially new fields or different field definitions for existing fields.

Any Failure scenarios will also failover to a full replication via ss_Replica if this parameter is set to

“Full”, for example:

• Objects that cannot technically be delta replicated

• If the given Object has not yet been fully replicated via ss_Replica

• If the entry in ss_Log is not present (yet the SQL table does exist)

• If the last replication was > 7 days ago

Input parameters provided to ss_Delta will be passed through to ss_Replica on an AutoReplica

failover

For example taking this fairly involved example of a ss_Replica:

exec ss_Replica 'DEMO', 'Account', 'Subset(Name) Table:CustomAcc','Where Name like ''%plc%'''

The subsequent ss_Delta of:

exec ss_Delta 'DEMO', 'Account', 'Full', 'Subset(Name) Table:CustomAcc','Where Name like

''%plc%'''

In the event of any of the conditions for a failover being met, will have @Special1 and @Special2

passed through to the called ss_Replica, i.e. for this example:

@Special1 = 'Subset(Name) Table:CustomAcc'

@Special2 = 'Where Name like ''%plc%'''

 61 | P a g e

Table ss_AutoReplica

On deployment table ss_AutoReplica is populated with Object Names of Objects that must be fully

replicated (i.e. where it is not appropriate to Delta Replicate). If you run ss_Delta with @AutoReplica

= Full then any Object in this table will automatically be fully replicated, hence you can leverage this

table to suit your own requirements if you require a given Object to always fully replicate, provided it

is present in table ss_AutoReplica and parameter @AutoReplica = Full.

Field Purpose

ObjectName For the given Object, will force a full replication, via ss_Replica, if

parameter @AutoReplica = Full.

Simple Example

exec ss_Delta 'DEMO', 'Account'

Specifying Batchsize

By default ss_Delta will use a batchsize of 2000 (the maximum possible via the Salesforce SOAP api).

Should you wish to use a smaller batchsize, specify this by passing in the custom batchsize when

passing in the Objectname as below:

exec ss_Delta 'DEMO', 'Account(25)'

Subset Example

exec ss_Delta 'DEMO', 'Account', null, 'Subset(Name,BillingCountry)'

Valid fields (i.e. that exist on the specified object and for which you have permission to query, will

only be returned, although note some basic fields to support the replication logic to function

correctly will be imposed (for example Id, isDeleted; SystemModStamp).

Use subset with caution as it will only delta maintain the subset of columns specified, which when

run against a fully replication table, can leave fields not in the subset scope, stale. Generally you

would use the same subset scope of fields in the initial ss_Replica and all subsequent ss_Delta runs.

Note, for larger sets of subset fields, you may prefer to input in a list form, example shown below,

which is an acceptable input method to the @Special1 input parameter:

 62 | P a g e

exec ss_Delta 'DEMO', 'Opportunity', null

,'Subset(

AccountId

,Amount

,CampaignId

,CloseDate

,Name

,NextStep

,OrderNumber__c

,OwnerId

,Pricebook2Id

,Probability

,StageName

,SystemModstamp

,TotalOpportunityQuantity

,TrackingNumber__c

,Type)'

Or

exec ss_Delta 'DEMO', 'Opportunity', null

,'Subset(

AccountId,

Amount,

CampaignId,

CloseDate,

Name,

NextStep,

OrderNumber__c,

OwnerId,

Pricebook2Id,

Probability,

StageName,

SystemModstamp,

TotalOpportunityQuantity,

TrackingNumber__c,

Type)'

Schema | Metadata change

Any changes to Salesforce since the last ss_Replica full rebuild (i.e. the local replica table), will be

notified in the output report when running ss_Delta. In the example below the field

"TestCheckbox__c" has been identified as being newly available. ss_Delta makes no attempt to merge

this into the local, as there will inevitably be rows in the local replica that fall outside the delta scope

of the current delta replication. It is therefore recommended to run a full ss_Replica at the next

available opportunity. Unless you have run ss_Delta with @AutoReplica = ‘Full’ in which case

ss_Replica will have been automatically run and you wouldn’t be encountering this information

message

21:43:49: New Column: TestCheckbox__c has subsequently been created/made visible in SF since the

last full replication, therefore excluded from delta scope: ss_replica recommended!

 63 | P a g e

Combined Subset, Batchsize and Top check example

exec ss_Delta 'DEMO', 'Account(25):Top100', null, 'Subset(Name,BillingCountry)'

Custom Replica Example

exec ss_Delta 'DEMO', 'Opportunity', null, 'Table:OppTest'

In this example, Salesforce Opportunity data will be delta replicated to the prior created via ss_Rplica

“OppTest” SQL table. This will exist entirely independently of any potential “Opportunity” replica

existing in the same deployed schema in your given Database.

For example running

exec ss_Delta 'DEMO', 'Opportunity', null, 'Table:OppTest'

exec ss_Delta 'DEMO', 'Opportunity'

will maintain two separate replica tables of Salesforce Opportunity data, one called Opportunity, the

other called OppTest. Note, the “Table:” switch must be applied consistently on each subsequent

ss_Delta run.

Where Clause Example

exec ss_Delta 'DEMO', 'Opportunity', null, 'Table:OppTest','Where StageName = ''Closed Won'''

Note, syntax must be in SOQL format. In this example, a where clause has been added, which will be

applied to the delta replica. It is entirely optional to apply this to a custom table or against the full

SF object name.

In this example, a where clause has been added to the base Salesforce object replica (i.e. no custom

table usage), the clause Type = New Customer has been passed in.

exec ss_Replica 'DEMO', 'Opportunity',null,'Where Type = ''New Customer'''

exec ss_Delta 'DEMO', 'Opportunity',null,null,'Where Type = ''New Customer'''

Note, any custom Replica created with a Where clause must continue to have that same
identical Where clause applied any subsequent ss_Delta calls, otherwise the Delta logic will be
compromised as there will be no consistency between the scope of the original ss_Replica and
the delta data retrievals via ss_Delta.

 64 | P a g e

 65 | P a g e

ss_DeltaAll
ss_DeltaAll allows you to run ss_Delta in bulk.

Simple Example

exec ss_DeltaAll 'DEMO'

With @ObjectNameFrom

exec ss_DeltaAll 'DEMO', 'Opportunity'

This will commence the bulk ss_Delta replication from the Object immediately following Opportunity,

which could be OpportunityCompetitor if there is no other custom or standard object with a name

closer to Opportunity, sorting alphabetically. This is useful if a prior run of ss_DeltaAll has failed for

whatever reason and you wish to re-commence from the point of failure.

With AutoReplica = Full

exec ss_DeltaAll 'DEMO',null,’Full’

@AutoReplica will be passed through to each attempted ss_Delta, which will automatically failover to

ss_Replica should any AutoReplica condition be met.

Parameters

Parameter Purpose
@Env SQL Sales Environment Name

@ObjectNameFrom This will commence the bulk ss_Delta replication from the Object

immediately following the one passed in via @ObjectNameFrom. This is

useful if a prior run of ss_DeltaAll has failed for whatever reason and you

wish to re-commence from the point of failure.

@AutoReplica @AutoReplica will be passed through to each attempted ss_Delta, which

will automatically failover to ss_Replica should any AutoReplica

condition be met.

 66 | P a g e

ss_ObjectInclusion inclusion table

Field Purpose

ObjectName Definition of Objects you wish to include in each ss_DeltaAll run.

Only Objects contained in this table will be considered in scope.

Accompanying table ss_ObjectExclusion will additionally be

referenced, i.e. Objects within will be ignored.

ss_ObjectInclusion exclusion table

Field Purpose

ObjectName Add any Objects in this table to have them excluded from each

ss_DeltaAll run. On deployment (ss_EnableDatabase) a number of

known problem Objects are included in this table along with their

API Response Error Msg and Codes, for general reference.

It is a matter of choice whether you specify an Inclusion set (via

ss_ObjectInclusion) or exclude via this table. Generally, only a

relatively small number of Salesforce objects are required to

maintain a working replication database and hence

ss_ObjectInclusion is more appropriate, or even a hard coded list of

ss_Delta commands for each required Object, for example:

ss_Delta ‘DEMO’, ‘Account’

ss_Delta ‘DEMO’, ‘AccountHistory’

ss_Delta ‘DEMO’, ‘Opportunity’

Which is run via a SQL Agent Job or similar.

Running with no entries in this table but some entries in

ss_ObjectExclusion would be more appropriate, if you wanted to

automatically take an entire backup of your Salesforce Org, for

example.

ErrorMsg Salesforce API Response Error Msg

ErrorCode Salesforce API Response Error code

 67 | P a g e

META DATA
ss_MetaObject

Object Metadata

Pull all the objects in your Salesforce instance, or optionally just a single specified one.

Results are loaded to table ss_SysObject

Parameters

Parameter Purpose
@ObjectName Salesforce Object Name (for example Account).

alternatively pass "All" to retrieve all Objects.

@Env SQL Sales Environment Name, see Setup

@Special1 Future use, not currently used

@Special2 Future use, not currently used

Example of Use – All

exec ss_MetaObject 'DEMO', 'All'

SQL-SALES ss_SysObject run date: 2023-11-09 ----------------------

23:04:16: Using Env|Schema: DEMO|dbo

23:04:16: Starting ss_SysObject retrieval for: All Objects

23:04:19: Connection method BULK & SOAP API

23:04:19: Drop existing ss_SysObject if exists and recreate

23:04:21: Load to dbo.ss_SysObject

Example of Use – Single

exec ss_MetaObject 'DEMO', 'Account'

SQL-SALES ss_SysObject run date: 2023-11-09 ----------------------

 68 | P a g e

23:06:59: Using Env|Schema: DEMO|dbo

23:06:59: Starting ss_SysObject retrieval for: Account

23:07:02: Connection method BULK & SOAP API

23:07:02: Drop existing ss_SysObject if exists and recreate

23:07:04: Load to dbo.ss_SysObject

ss_SysObject table

• Name (api Name)

• Label (Label)

• KeyPrefix (where available/relevant, Object Id first 3 characters)

• Replicateable (boolean)

• Queryable (boolean)

• Createable (boolean)

• Updateable (boolean)

• Deletable (boolean)

• Searchable (boolean)

• Retrieveable (boolean)

• Layoutable (boolean)

• Triggerable (boolean)

• Mergeable (boolean)

• Custom (boolean)

 69 | P a g e

ss_MetaField

Field Metadata

Pull all the fields in your Salesforce instance, per Object, or optionally just a single specified Object's

fields.

Results are loaded to table ss_SysField

Parameters

Parameter Purpose
@ObjectName Salesforce Object Name (for example Account).

alternatively pass "All" to retrieve all Objects.

@Env SQL Sales Environment Name, see Setup

@Special1 Optional, default is "B" for BULK. This allows the Environment

"Connection Method" setting to be overridden, per ss_MetaField run.

Pass "O" for ODBC or "B" for BULK.

@Special2 Future use, not currently used

Example of Use - All

exec ss_MetaField 'DEMO', 'All'

SQL-SALES ss_SysField run date: 2023-11-09 ----------------------

23:15:07: Using Env|Schema: DEMO|dbo

23:15:07: Starting ss_SysField retrieval for: All Objects

23:15:09: Connection method BULK & SOAP API

23:15:09: Drop existing ss_SysField if exists and recreate

23:16:57: Load to dbo.ss_SysField

Example of Use - Single

exec ss_MetaField 'DEMO', 'Account'

SQL-SALES ss_SysField run date: 2023-11-09 ----------------------

23:22:56: Using Env|Schema: DEMO|dbo

23:22:56: Starting ss_SysField retrieval for: Account

23:22:58: Connection method BULK & SOAP API

23:22:58: Drop existing ss_SysField if exists and recreate

23:23:00: Load to dbo.ss_SysField

 70 | P a g e

ss_SysField table

• ObjectName (Object api Name)

• ObjectLabel (Object Label)

• ObjectReplicateable (boolean)

• ObjectQueryable (boolean)

• FieldName (Field api Name)

• FieldLabel (Field Label)

• DataType (Field data type)

• Length (Field data length)

• ByteLength (Field byte size)

• Updateable (boolean)

• Createable (boolean)

• Unique (boolean)

• Nillable (boolean)

• Custom (boolean)

• DependentPicklist (boolean)

• DeprecatedAndHidden (boolean)

• Encrypted (boolean)

• ExternalId (boolean)

• NameField (boolean)

• Permissionable (boolean)

• ReferenceTo (Related Object(s))

 71 | P a g e

ss_MetaPick

Picklist Metadata

Pull all Picklist values, per Object, or optionally just a single specified Object's picklists.

Results are loaded to table ss_SysPicklist

Parameters

Parameter Purpose
@ObjectName Salesforce Object Name (for example Account).

alternatively pass "All" to retrieve all Objects.

@Env SQL Sales Environment Name, see Setup

@Special1 Future use, not currently used

@Special2 Future use, not currently used

Example of Use - All

exec ss_MetaPick 'DEMO', 'All'

SQL-SALES ss_SysPicklist run date: 2023-11-09 -------------------

23:29:32: Using Env|Schema: DEMO|dbo

23:29:32: Starting ss_SysPicklist retrieval for: All Objects

23:29:34: Connection method BULK & SOAP API

23:29:34: Drop existing ss_SysPicklist if exists and recreate

23:30:57: Load to dbo.ss_SysPicklist

 72 | P a g e

Example of Use - Single

exec ss_MetaPick 'DEMO', 'Account'

SQL-SALES ss_SysPicklist run date: 2023-11-09 -------------------

23:37:52: Using Env|Schema: DEMO|dbo

23:37:52: Starting ss_SysPicklist retrieval for: Account

23:37:55: Connection method BULK & SOAP API

23:37:55: Drop existing ss_SysPicklist if exists and recreate

23:37:58: Load to dbo.ss_SysPicklist

ss_SysPicklist table

• ObjectName (Object api Name)

• FieldName (Field api Name)

• Value (Picklist Value)

• Label (Picklist Label)

• Active (boolean)

• DefaultValue (boolean)

 73 | P a g e

HELPER TOOLS
ss_UserInfo

User Information

Results are loaded to table ss_SysUserInfo

Parameters

Parameter Purpose
@Env SQL Sales Environment Name, see Setup

@Special1 Future use, not currently used

@Special2 Future use, not currently used

Example of Use

exec ss_UserInfo 'DEMO'

SQL-SALES ss_SysUserInfo run date: 2023-11-09 ----------------------

23:51:09: Using Env|Schema: DEMO2|dbo

23:51:09: Starting ss_SysUserInfo retrieval

23:51:12: Connection method ODBC & SOAP API

23:51:12: Drop existing ss_SysUserInfo if exists and recreate

23:51:14: Load to dbo.ss_SysUserInfo

ss_SysUserInfo table

• UserId (User.Id of the @Env user)

• Name (User.Name of the @Env user)

• Username (User.Username of the @Env user)

• Email (User.Email of the @Env user)

• ProfileName (User.ProfileId.Profile.Name of the @Env user)

• RoleName (User.RoleId.UserRole.Name of the @Env user)

Note, if OAuth2.0 has been configured as your Connection Method in the Environment

Configuration tool, the User Info returned will be for the defined “Integration Username”

 74 | P a g e

• SessionId (The Salesforce Session Id of the established session)

• UserGroups (Member Groups of the @Env user)

• PermissionSetGroups (PermissionSetGroups of the @Env user)

 75 | P a g e

Working with Salesforce 15 character Ids
If you have a requirement to bulk query source 15 character Ids against SQL Sales replicated 18

character Ids, you are recommended to force a case sensitive (CS) collation in the query.

For example:

select

sf_a.Id

,s.LegacyId

,sf_a.Name

from SourceData s

join Account sf_a

on s.LegacyId collate Latin1_General_CS_AS = left(sf_a.Id,15)

Here, the Sourcedata.LegacyId is a case sensitive 15 character Salesforce Id. Assuming your database

collation is case insensitive (which is generally the case), it is unsafe to assume a simple left(Id,15) will

reliably return a single match, as for example 0018d00000rRRGeAAO and 0018d00000rRRgeAAO are

different Ids, yet left(Id,15) in a default case insensitive collation will regard them as the same string.

If you have a need to spot check the conversion from a 15 character to 18 character, refer to the

ss_18 function which follows, although for performance reasons generally speaking the collation

technique described here is recommended.

 76 | P a g e

ss_18

15 to 18 Salesforce Id conversion

Simple function to return the case insensitive 18 character Salesforce Id from an inputted 15

character case sensitive Id.

Parameters

Parameter Purpose
@ui_id nchar(15) inputted Salesforce 15 character Id

Example of Use

select dbo.ss_18('0018d00000P8DFz')

 77 | P a g e

ss_Admin

Stopping the Daemon

exec ss_Admin 'STOP'

SQL-SALES ss_Admin run date: 2023-11-09 ----------------------

23:42:30: Using Schema: dbo

23:42:31: SQL-Sales Daemon successfully stopped

--

Starting the Daemon

exec ss_Admin 'START'

SQL-SALES ss_Admin run date: 2023-11-09 ----------------------

23:43:20: Using Schema: dbo

23:43:27: SQL-Sales Daemon successfully started

--

Stopping the Handler

exec ss_Admin 'STOP_HANDLER'

SQL-SALES ss_Admin run date: 2023-11-09 ----------------------

23:44:40: Using Schema: dbo

23:44:41: SQL-Sales Handler successfully stopped

--

Checking the Environments

exec ss_Admin 'ENVS'

SQL-SALES ss_Admin run date: 2023-11-09 ----------------------

23:47:07: Using Schema: dbo

23:47:08: Configured Environments, Name (Username):

23:47:08: DEMO2 (demo2@sql-sales.com)

23:47:08: DEMO (demo@sql-sales.com)

23:47:08: HARD (hard.delete@sql-sales.com)

--

 78 | P a g e

LOADING (SS_LOADER)
SQL Sales has a powerful yet simple to use feature supporting the following data operations,

designed to make working with Salesforce very straightforward for those familiar and comfortable

using SQL Server. ss_loader works with the standard web services SOAP API, including loading Files

& Notes. It also supports both Version 1 and Version 2 of the Bulk API. These Salesforce APIs do not

support all data operations, the supported set, per API are as below:

SOAP API BULK API v1 BULK API v2
Insert BulkAPIv1Insert BulkAPIv2Insert

Update BulkAPIv1Update BulkAPIv2Update

Delete BulkAPIv1Delete BulkAPIv2Delete

Undelete n/a n/a

Upsert BulkAPIv1Upsert BulkAPIv2Upsert

n/a BulkAPIv1Harddelete BulkAPIv2Harddelete

Provide your data in a SQL table and point to Salesforce via a configured Environment, choosing one

of the supported operations. Success is logged in the required Error field, or any failures passed back

via the Salesforce api are also provided in the Error field.

In the case of Inserts, the newly created Id is helpfully populated into the Id column. Similarly in the

case of Upsert-Inserts – i.e. if no match is found via the specified External Id and an Insert occurs, the

new Id will also be provided in the Id column.

Parameter Purpose

@Operation

Operation: Insert, Update, Upsert, Delete, Undelete, BulkAPIv1Insert,

BulkAPIv1Update, BulkAPIv1Delete, BulkAPIv1Upsert,

BulkAPIv1Harddelete, BulkAPIv2Insert, BulkAPIv2Update,

BulkAPIv2Delete, BulkAPIv2Upsert, BulkAPIv2Harddelete

Define a custom batchsize (for example 25) in this form:

Note, Insert and Update operations writing back Id and Error values to the Load table are fully
supported in the SOAP API. This is similarly supported in Version 1 of the Bulk API via the WAIT
method. It is not possible with Version 2 of the Bulk API, although alternative support is available
via the _Return table.

All other operations (Update, Delete, Undelete) for the SOAP API and Update, Delete, Harddelete
for both versions of the Bulk API fully support writing back to the Error column.

 79 | P a g e

Parameter Purpose
Insert(25), Update(25), Upsert(25), Delete(25), Undelete(25)

See Upsert section for special options concerning the External Id

@Env SQL Sales Environment Name

@TableName

SQL table you have defined and created. There are certain rules to be

adhered to in the structure (mainly that an Id is present, defined as

nchar(18) and an Error column, defined as nvarchar(255).

The name of the table is significant as the left section of the name up to

the first underscore should exactly match the Salesforce object you are

performing the load against.

For example table "Account_TestLoad_Insert" will be recognised by SQL

Sales as being a payload for the "Account" object.

Similarly "TestObject__c_TestLoad_Update will be recognised by SQL

Sales as being a payload for the "TestObject__c" object.

Only alphanumeric and underscore characters are supported in the table

name.

@Special1

Optional, in simple usage, null

Options

B = force use of the BULK connection method (if the Environment is

configured for ODBC

O = force use of the ODBC connection method (if the Environment is

configured for BULK

For Bulk API V1 operations:

WAIT:SERIAL

WAIT:PARALLEL

BACK:SERIAL

BACK:PARALLEL

JOB:WAIT:SERIAL

JOB:WAIT:PARALLEL

JOB:BACK:SERIAL

JOB:BACK:PARALLEL

For Bulk API V2 operations:

WAIT

BACK

JOB:WAIT

JOB:BACK

 80 | P a g e

Parameter Purpose

@Special2

Used to receive a (known) Job Id for when @Special1 is one of:

For when Bulk API V1 operations was specified as one of:

JOB:WAIT:SERIAL

JOB:WAIT:PARALLEL

JOB:BACK:SERIAL

JOB:BACK:PARALLEL

Or for when Bulk API V2 operations was specified as one of:

JOB:WAIT

JOB:BACK

This is a summary of what you can expect with regards how the Load table is supported in relation to

which Method you use, which Bulk API Version and which Operation.

Method Writes to Load table Writes to Return
table

WAIT:SERIAL (Version 1) Yes for all operations Yes for all operations

WAIT:PARALLEL (Version 1) Yes for all operations Yes for all operations

BACK:SERIAL (Version 1)

Yes for Update, Delete,

Harddelete (once the JOB-

BACK run has completed in

Salesforce and you’ve followed

up with a WAIT)

No for Insert, Upsert

Yes for all operations

(once the JOB-BACK run has

completed in Salesforce and

you’ve followed up with a

WAIT)

BACK:PARALLEL (Version 1)

Yes for Update, Delete,

Harddelete (once the JOB-

BACK run has completed in

Salesforce and you’ve followed

up with a WAIT)

No for Insert, Upsert

Yes for all operations

(once the JOB-BACK run has

completed in Salesforce and

you’ve followed up with a

WAIT)

JOB:WAIT:SERIAL (Version 1)

Yes for Update, Delete,

Harddelete

(once the JOB-BACK run has

completed in Salesforce and

you’ve followed up with a

WAIT)

No for Insert, Upsert

Yes for all operations

JOB:WAIT:PARALLEL (Version 1)

Yes for Update, Delete,

Harddelete

(once the JOB-BACK run has

completed in Salesforce and

Yes for all operations

 81 | P a g e

Method Writes to Load table Writes to Return
table

you’ve followed up with a

WAIT)

No for Insert, Upsert

JOB:BACK:SERIAL (Version 1)

Yes for Update, Delete,

Harddelete

(once the JOB-BACK run has

completed in Salesforce and

you’ve followed up with a

WAIT)

No for Insert, Upsert

Yes for all operations

JOB:BACK:PARALLEL (Version 1)

Yes for Update, Delete,

Harddelete

(once the JOB-BACK run has

completed in Salesforce and

you’ve followed up with a

WAIT)

No for Insert, Upsert

Yes for all operations

WAIT (Version 2)

Yes for Update, Delete,

Harddelete

No for Insert, Upsert

Yes for all operations

BACK (Version 2)

Yes for Update, Delete,

Harddelete (once the JOB-

BACK run has completed in

Salesforce and you’ve followed

up with a WAIT)

No for Insert, Upsert

Yes for all operations

JOB:WAIT (Version 2)

Yes for Update, Delete,

Harddelete

(once the JOB-BACK run has

completed in Salesforce and

you’ve followed up with a

WAIT)

No for Insert, Upsert

Yes for all operations

JOB:BACK (Version 2)

Yes for Update, Delete,

Harddelete

(once the JOB-BACK run has

completed in Salesforce and

you’ve followed up with a

WAIT)

No for Insert, Upsert

Yes for all operations

 82 | P a g e

This is a summary of what you can expect with regards the write-back to the Error column and the

newly created Ids for Insert & Upsert.

Operation SOAP API Bulk API V1 Bulk API V2
Insert

BulkAPIv1Insert

BulkAPIv2Insert

Yes Yes (via WAIT) No (but does write to

_Return table)

Update

BulkAPIv1Update

BulkAPIv2Update

Yes Yes Yes

Delete

BulkAPIv1Delete

BulkAPIv2Delete

Yes Yes Yes

Undelete Yes n/a n/a

Upsert

BulkAPIv1Upsert

BulkAPIv2Upsert

Yes Yes (via WAIT) No (but does write to

_Return table)

BulkAPIv1Harddelete

BulkAPIv2Harddelete

n/a Yes Yes

 83 | P a g e

SSId
By default, SQL Sales will add a primary key of SSId, defined as an integer identity(1,1). This key is

how SQL Sales processes the data at the back end and maintains data integrity as it performs the

various loads. You can provide you own SSId field if that works better for your use case, however it

must be defined as an integer identity(1,1). If it is not, the following error message will be thrown and

the process will terminate:

SQL-SALES insert run date: 2023-11-04 ---------------------------

20:15:03: Using Env|Schema: DEMO|dbo

20:15:03: Provided Load Table: Account_TestLoad_Insert (for schema: dbo) contains an integer

field called SSId which is not defined as an identity column

Metadata checks

It is quite normal to want or need to have additional columns in your load table, that assist in what

you're trying to achieve. SQL Sales will perform a validation of each column against the available

columns for the given load object, if the column either doesn't exist or can't be operated against due

to the User permissions of the Username defined in the Environment configuration, then SQL Sales

will simply ignore that column in the given data operation (and report back that it has been ignored).

In the example below, the Column "HelpderData" has been included in the build of the load table:

drop table if exists Account_TestLoad_Insert

create table Account_TestLoad_Insert

(Id nchar(18)

,Error nvarchar(255)

,Name nvarchar(255)

,HelperData nvarchar(255))

insert Account_TestLoad_Insert

(Name

,HelperData)

select 'Test1 for SQL-Sales','Info1'

union select 'Test2 for SQL-Sales','Info2'

 84 | P a g e

The Insert will run as normal, but note the exclusion information message on the output report:

SQL-SALES insert run date: 2023-11-04 ---------------------------

20:17:59: Using Env|Schema: DEMO|dbo

20:17:59: Starting Loader for Account batchsize 200

20:17:59: SSId added to Account_TestLoad_Insert

20:18:02: Connection method BULK & SOAP API

20:18:02: Columns checked against Salesforce metadata

20:18:04: Excluded: HelperData is not available on object Account

20:18:04: Load complete: Success:2 Failure:0

Batchsize

Note by default, with the SOAP API, without specifying a batchsize, 200 is used, the maximum for the

SOAP api.

Customise this by passing in the operation in the format:

<operation>(<batchsize>)

for example: Insert(25) - repeating the example:

exec ss_Loader 'Update(25)','DEMO','Account_TestLoad_Update'

As you’ll discover in the later BULK API sections, you can also specify a custom batchsize (from

default 10000) with the Version 1 Bulk API, for example:

exec ss_Loader 'BulkAPIv1Update(5000)','DEMO','Account_TestLoad_Update',’WAIT:SERIAL’

The Version 2 Bulk API does not support batchsize (in practical terms this means Salesforce will

generally apply a batchsize of 10000).

 85 | P a g e

Insert

Create a load table Example

This example creates a load table called "Account_TestLoad_Insert". The Id and Error columns are

mandatory, as this is an Insert there is nothing to add into Id, but it needs to be provided, as the

resultant created record Id will be passed back on creation. All load operations require the Error

column, whether success or failure, to guide and inform you.

drop table if exists Account_TestLoad_Insert

create table Account_TestLoad_Insert

(Id nchar(18)

,Error nvarchar(255)

,Name nvarchar(255))

insert Account_TestLoad_Insert

(Name)

select 'Test1 for SQL-Sales'

union select 'Test2 for SQL-Sales'

Running the example

exec ss_Loader 'Insert','DEMO','Account_TestLoad_Insert'

SQL-SALES Insert run date: 2023-11-04 ---------------------------

18:35:30: Using Env|Schema: DEMO|dbo

18:35:30: Starting Loader for Account batchsize 200

18:35:30: SSId added to Account_TestLoad_Insert

18:35:33: Connection method BULK & SOAP API

18:35:33: Columns checked against Salesforce metadata

18:35:38: Load complete: Success:2 Failure:0

As described, the created Id for the insert(s) will be passed back to the load table

 86 | P a g e

Update

Create a load table Example

This example creates a load table called "Account_TestLoad_Upsert". The Id and Error columns are

mandatory. All load operations require the Error column, whether success or failure, to guide and

inform you. Update requires a populated Id column.

drop table if exists Account_TestLoad_Update

select

Id

,convert(nvarchar(255),null) as Error

,convert(bit,1) as TestCheckbox__c

,TestCheckbox__c as TestCheckbox__c_Orig

,'HelperTextExample' as RandomAdditionalText_Info

into Account_TestLoad_Update

from Account

In this example, the Update payload has been generated from the prior replicated Account table. The

field "TestCheckbox__c" is currently set to 0 / FALSE. The script above has prepared an update

payload, setting to 1 / TRUE. As a good practice, to preserve the original value in the payload table,

we recommend you embed the original value to keep a record of the value prior to the update

change.

This example also illustrates that you can have "helper" columns also in the payload.

SQL Sales best practise is to have original values included, with a "_Orig" (for original) suffix added to

the column name. Similarly informational columns, useful in working with the payload should have

the suffix "_Info" (for information).

To be clear, these suffix conventions are not expected or mandatory whatsoever, we just try and
encourage their use, but of course, how you use SQL Sales is up to you.
Note, to get near real time accuracy, it is recommended to run a ss_Delta just before you grab the
Account data (for this particular example which is sourcing from Salesforce itself).

 87 | P a g e

Running the example

exec ss_Loader 'Update','DEMO','Account_TestLoad_Update'

SQL-SALES Update run date: 2023-11-04 ---------------------------

19:03:54: Using Env|Schema: DEMO|dbo

19:03:55: Starting Loader for Account batchsize 200

19:03:55: SSId added to Account_TestLoad_Update

19:03:58: Connection method BULK & SOAP API

19:03:58: Columns checked against Salesforce metadata

19:04:11: Excluded: RandomAdditionalText_Info is not available on object Account

19:04:11: Excluded: TestCheckbox__c_Orig is not available on object Account

19:04:11: Load complete: Success:1801 Failure:0

Note the reported column exclusions:
Excluded: RandomAdditionalText_Info is not available on object Account
Excluded: TestCheckbox__c_Orig is not available on object Account

 88 | P a g e

Delete

Create a load table Example

This example creates a load table called "Account_TestLoad_Delete". The Id and Error columns are

mandatory. All load operations require the Error column, whether success or failure, to guide and

inform you. Delete requires a populated Id column.

drop table if exists Account_TestLoad_Delete

select

Id

,convert(nvarchar(255),null) as Error

,Name

,'HelperTextExample' as RandomAdditionalText_Info

into Account_TestLoad_Delete

from Account

In this example, the Delete payload has been generated from the prior replicated Account table.

Additional fields (for example "Name" and "RandomAdditionalText_Info") can be included in the

payload, if required or necessary for your particular use case. The Delete operation will ignore (but

preserve) them as it is only concerned with the Id and Error fields.

This example also illustrates some failure scenarios.

Running the example

exec ss_Loader 'Delete','DEMO','Account_TestLoad_Delete'

SQL-SALES Delete run date: 2023-11-04 ---------------------------

19:23:17: Using Env|Schema: DEMO|dbo

19:23:17: Starting Loader for Account batchsize 200

19:23:17: SSId added to Account_TestLoad_Delete

19:23:20: Connection method BULK & SOAP API

19:23:20: Columns checked against Salesforce metadata

19:23:57: Load complete: Success:1791 Failure:10

Note the failures being reported in this example

 89 | P a g e

Here we can see the standard data provided by Salesforce in the Developer instance cannot be

deleted due to referential integrity validation constraints and reported back via the Salesforce api to

SQL Sales and in turn the Error column.

 90 | P a g e

Undelete

Create a load table Example

This example creates a load table called "Account_TestLoad_Undelete". The Id and Error columns are

mandatory. All load operations require the Error column, whether success or failure, to guide and

inform you. Undelete requires a populated Id column.

drop table if exists Account_TestLoad_Undelete

select

Id

,convert(nvarchar(255),null) as Error

into Account_TestLoad_Undelete

from Account_TestLoad_Delete

where Error = 'Success'

In this example, the Undelete payload has been generated from the prior Delete payload example,

taking only those which were successfully deleted. As usual, additional fields can be included in the

payload, if required or necessary for your particular use case. The Delete operation will ignore (but

preserve) them as it is only concerned with the Id and Error fields

Running the example

exec ss_Loader 'Undelete','DEMO','Account_TestLoad_Undelete'

SQL-SALES Undelete run date: 2023-11-04 -------------------------

19:34:28: Using Env|Schema: DEMO|dbo

19:34:28: Starting Loader for Account batchsize 200

19:34:28: SSId added to Account_TestLoad_Undelete

19:34:31: Connection method BULK & SOAP API

19:34:31: Columns checked against Salesforce metadata

19:35:06: Load complete: Success:1791 Failure:0

 91 | P a g e

Upsert
Upsert with SQL Sales and working with the Salesfore api is a little different to the other operations.

Update, Delete and Undelete all work from the provided Id, with regards what records to operate

against. Insert merely creates new records and passes the new Id back.

Whereas Upsert, as the name suggests, works primarily off a provided External Id for the given object

being upserted against.

If a match is found in that Salesforce object for the value being passed in, then the Operation will

update the provided fields in the table payload to the matched record.

If a match is not found, the Upsert operation will insert a new record, using the provided fields in the

table payload.

External Id

Upsert will only work against an External data type field. This is a special setting for a field in

Salesforce:

For this example, the field "External_Id__c" has been added to the Account object, note the special

indicator "(External ID)". If you intended External Id does not have this, it is likely not actually setup as

an External Id, no matter what the field name is.

SQL Sales will inform if it is not truly an External Id, this is demonstrated in the following examples.

https://downloads.intercomcdn.com/i/o/774587644/09ff1df0944ac5f947e1ece5/ss_Loader+upsert1.png
https://downloads.intercomcdn.com/i/o/774588044/fe7f3d02920476154e7fcdf1/ss_Loader+upsert2.png

 92 | P a g e

Create a load table Example (Prep)

This example creates a load table called "Account_TestLoad_Update", to populate the newly created

External_Id__c with values, this is merely background preparation so this example can work off values

in Salesforce. Remember, for Updates, the Id and Error columns are mandatory. All load operations

require the Error column, whether success or failure, to guide and inform you. Update requires a

populated Id column.

drop table if exists Account_TestLoad_Update

select

Id

,convert(nvarchar(255),null) as Error

,AccountNumber as External_Id__c

,External_Id__c as External_Id__c_Orig

into Account_TestLoad_Update

from Account

where AccountNumber is not null

Running the example (prep)

This is being provided as an educational guide to using ss_Loader and is not directly relevant for

Upsert, the specific Upsert instructions are coming up in the next section

exec ss_Loader 'Update','DEMO','Account_TestLoad_Update'

Main Example

Examining the prepared Upsert payload, note that there is a column called "XId". This is the column

which holds the value to be matched against the External Id specific to your use case (see detail

coming up). Note also that three fields have values in XId, in fact two of these exist in Salesforce in

field Account.External_Id__c, these will be matched and hence updated. The third value "XXXYYYZZZ"

does not exist and so will be inserted. The fourth record has no value in XId and so will not be

matched either, resulting in a failure as the External Id must be provided.

 93 | P a g e

Running the example

Note, the XId column is assigned to the actual External api field name with the switch convention:

Upsert:XId=External_Id__c

exec ss_Loader 'Upsert:XId=External_Id__c','DEMO','Account_TestLoad_Upsert'

SQL-SALES Upsert:XId=External_Id__c run date: 2023-11-04 --------

19:59:24: Using Env|Schema: DEMO|dbo

19:59:26: Starting Loader for Account batchsize 200

19:59:26: SSId added to Account_TestLoad_Upsert

19:59:29: Connection method BULK & SOAP API

19:59:29: Columns checked against Salesforce metadata

19:59:32: Load complete: Success:3 Failure:1

Here we can observe from the load table that as expected, three records are successful and the

fourth has failed as no External Id has been provided.

The next test will be to run ss_Delta, where we expect 2 Updates and 1 Insert:

 94 | P a g e

exec ss_Delta 'DEMO', 'Account'

SQL-SALES Delta run date: 2023-11-04 ----------------------------

20:03:53: Using Env|Schema: DEMO|dbo

20:03:53: Starting Delta Replication, checking input Account

20:03:58: Provided Objectname Account is valid with batchsize 2000

20:03:58: Delta schema successfully built using connection method BULK & SOAP API

20:03:58: Data population fully completed

20:03:58: 3 rows delta replicated: Insert:1 Update:2 Delete:0

Querying the delta refreshed local Account table, we can see the pre-existing and matched-to

records have been updated with the "__StringAdded" text appended to the Name field, whereas the

unmatched third record has been inserted (created).

 95 | P a g e

Invalid input

The field name passed in must be both a valid Salesforce field and crucially one which is defined as

an External Id.

The below attempts are a field name that does not exist in Salesforce followed by a field name that

does exist but which is not defined as an External Id

exec ss_Loader 'Upsert:XId=ExternalId','DEMO','Account_TestLoad_Upsert'

SQL-SALES Upsert:XId=ExternalId run date: 2023-11-04 ------------

20:06:43: Using Env|Schema: DEMO|dbo

20:06:46: Provided External Id: "ExternalId" for the Upsert operation

20:06:46: is not defined as an External Id on the Account object

The final check is that the expected formatting convention of "Upsert:XId=<External field name>" for

example "Upsert:XId=External_Id__c" does rely on the ":XId=" section being passed in correctly,

below is an example where that has not been passed in as expected:

exec ss_Loader 'Upsert:X=External_Id__c','DEMO','Account_TestLoad_Upsert'

SQL-SALES Upsert:X=External_Id__c run date: 2023-11-04 ----------

20:10:02: Using Env|Schema: DEMO|dbo

20:10:02: Provided Upsert Operation value not in the correct format, for a hypothetical field

called "External_Id__c"

20:10:02: set (in Salesforce) as an External Id (this is a field setting)

20:10:02: the expected input value for the standard web services API is:

Upsert:XId=External_Id__c

20:10:02: or BulkAPIUpsert:XId=External_Id__c for the bulk API

20:10:02: with a defined batchsize (for example 100 or 1000 respectively) these would be:

20:10:02: Upsert(100):XId=External_Id__c | BulkAPIv1Upsert(10000):XId=External_Id__c |

BulkAPIv2Upsert(2000):XId=External_Id__c

20:10:02: Note, the provided External Id is validated directly against Salesforce Account

20:10:02: prior to the run commencing to check it is actually defined as an External Id.

 96 | P a g e

Files and Notes
Working with the Salesforce Content model can be challenging. SQL Sales offers multiple ways to

work with the model, based on real world experiences of moving note data and files around.

ContentNote (from a file)

The standard way to load a ContactNote record is to associate the load payload insert record with a

file, residing in a UNC path, accessible to SQL Sales.

By default, from installation, SQL Sales assumes you will be loading via the standard api approach of

passing in a location of a file. Ensure the configuration of your given Environment is as below:

Basic text example

In this example a basic .txt file, as seen below in notepad and in the path shown, will be loaded to

Salesforce as a ContentNote.

Note, additionally ensure you have enabled the Salesforce CRM Content setting (see below)

 97 | P a g e

Prepare the payload

drop table if exists ContentNote_Test1_Insert

select

convert(nchar(18),null) as Id

,convert(nvarchar(255),null) as Error

,convert(nvarchar(255),'Test1 Title') as Title

,convert(nvarchar(max),'C:\SQLSales\files\Test1 basic text.txt') as Content

into ContentNote_Test1_Insert

Running the example

exec ss_Loader 'insert','demo','ContentNote_Test1_Insert'

SQL-SALES insert run date: 2023-11-11 ---------------------------

16:19:42: Using Env|Schema: demo|dbo

16:19:42: Starting Loader for ContentNote batchsize 200

16:19:42: SSId added to ContentNote_Test1_Insert

16:19:46: Connection method BULK & SOAP API

16:19:46: Columns checked against Salesforce metadata

16:19:48: Load complete: Success:1 Failure:0

Examine the output

You are recommended to return the test example, to familiarise yourself with the Salesforce Content

data model as we work through these examples

Modify the below configuration setting depending on whether you want to return fields such as

ContentNote.Content and ContentVersion.VersionData. For large volumes records, it is not always

necessary to hold the binary data in the base64 fields, hence a more efficient approach to managing

the replication of objects like this, is to bypass by unchecking this setting.

exec ss_Replica 'demo', 'ContentNote'

 98 | P a g e

exec ss_Replica 'demo', 'ContentVersion'

exec ss_Replica 'demo', 'ContentDocument'

By inserting this one ContentNote record, Salesforce has created the following:

• ContentNote holds the Note, converted to a file in Salesforce, the binary data of which is

held in ContentNote.Content.

• ContentNote.Id is in fact the ContentDocument.Id

• ContentNote.LatestPublishedVersionId is the ContentVersion.Id

• ContentVersion.FirstPublishLocationId is by default the Load User typically or

ContentNote.OwnerId if you had specified one

• ContentNote.Content is the same as ContentVersion.VersionData

ContentNote is in effect an extension of the ContentDocument itself (as ContentNote.Id is the

ContentDocument.Id).

Shown in Salesforce:

 99 | P a g e

HTML text example

In this example an html txt file, as seen below in notepad and opening in a browser, will be

submitted. Salesforce will happily load an html formatted document to a ContentNote record. The

path for this example is also shown below.

 100 | P a g e

Prepare the payload

drop table if exists ContentNote_Test2_Insert

select

convert(nchar(18),null) as Id

,convert(nvarchar(255),null) as Error

,convert(nvarchar(255),'Test2 Title') as Title

,convert(nvarchar(max),'C:\SQLSales\files\Test2.html') as Content

into ContentNote_Test2_Insert

Running the example

exec ss_Loader 'insert','demo','ContentNote_Test2_Insert'

SQL-SALES insert run date: 2023-11-11 ---------------------------
17:34:58: Using Env|Schema: demo|dbo

17:34:58: Starting Loader for ContentNote batchsize 200

17:34:58: SSId added to ContentNote_Test2_Insert

17:35:01: Connection method BULK & SOAP API

17:35:01: Columns checked against Salesforce metadata

17:35:04: Load complete: Success:1 Failure:0

Shown in Salesforce:

 101 | P a g e

ContentNote (from data), basic text

The alternative method which SQL Sales has made possible, is to load SQL Server data to

ContentNote, without the need for a file of the Note to be referenced as with the previous approach.

You will have to ensure the configuration of your given Environment is as below (as the data will be

loaded as data and not from a file):

Basic text example

In this example, the hard-coded text “Test, direct text approach” is representing a varchar / nvarchar

text field you may have from a data source you have staging in SQL Server. Note that the

preparation above converts to data type varbinary(max).

drop table if exists ContentNote_Test3_Insert

select

convert(nchar(18),null) as Id

,convert(nvarchar(255),null) as Error

,convert(nvarchar(255),'Test3 Title') as Title

,convert(varbinary(max),'Test, direct text approach') as ContentText

,convert(varchar(max),null) as Content

into ContentNote_Test3_Insert

The next step is to convert, using the above code, the varbinary(max) to varchar(max). Use these

code snippets as a foundation for your own TSQL coding, likely with many more records.

update ContentNote_Test3_Insert

set Content = convert(varchar(max),CAST(N'' AS

XML).value('xs:base64Binary(xs:hexBinary(sql:column("ContentText")))', 'varchar(max)'))

Running the example

exec ss_Loader 'insert','demo','ContentNote_Test3_Insert'

SQL-SALES insert run date: 2023-11-11 ---------------------------

18:46:22: Using Env|Schema: demo|dbo

18:46:22: Starting Loader for ContentNote batchsize 200

18:46:22: SSId added to ContentNote_Test3_Insert

18:46:27: Connection method BULK & SOAP API

18:46:27: Columns checked against Salesforce metadata

18:46:30: Excluded: ContentText is not available on object ContentNote

18:46:30: Load complete: Success:1 Failure:0

 102 | P a g e

Shown in Salesforce:

ContentNote (from data), existing base64

As with the previous basic example, you will have to ensure the configuration of your given

Environment is as below (as the data will be loaded as data and not from a file):

In this example, we will be taking the existing base64 binary data directly from SQL Server, in this

case from the ContentNote.Content varbinary(max) data from the previously loaded examples.

Existing base64 example

drop table if exists ContentNote_Test4_Insert

select

convert(nchar(18),null) as Id

,convert(nvarchar(255),null) as Error

,convert(nvarchar(255),'Test4 Title (from ' + Title + ')') as Title,convert(varchar(max),CAST(N''

AS XML).value('xs:base64Binary(xs:hexBinary(sql:column("Content")))', 'varchar(max)')) as Content

into ContentNote_Test4_Insert

from ContentNote

Running the example

exec ss_Loader 'insert','demo','ContentNote_Test4_Insert'

SQL-SALES insert run date: 2023-11-11 ---------------------------

19:07:06: Using Env|Schema: demo|dbo

19:07:06: Starting Loader for ContentNote batchsize 200

19:07:06: SSId added to ContentNote_Test4_Insert

 103 | P a g e

19:07:08: Connection method BULK & SOAP API

19:07:08: Columns checked against Salesforce metadata

19:07:12: Load complete: Success:3 Failure:0

Shown in Salesforce:

ContentVersion (from a file to a file held in Salesforce)

The standard way to load a ContentDocument (ContentVersion) record is to associate the load

payload insert record with a file, residing in a UNC path, accessible to SQL Sales and therefore also

accessible to the SQL Server service account which is running your MSSQL.

By default, from installation, SQL Sales assumes you will be loading via the standard api approach of

passing in a location of a file. Ensure the configuration of your given Environment is as below:

Any file can be loaded to Salesforce, in the following example, four files of different types will be

loaded in the same payload.

 104 | P a g e

Prepare the payload

Your ContentVersion payload table must contain these fields

Field Datatype Purpose
Id nchar(18) null on the insert payload

Error nvarchar(255) null on the insert payload

Title nvarchar(255) Title of the loaded document

Origin char(1)

C = (standard option) for Content

H = Salesforce files from the user’s My Files

(Chatter but also for files external to Salesforce)

ContentLocation char(1)

S = Document is in Salesforce

E = Document is outside of Salesforce

L = Document is on a Social Network

Description nvarchar(255) Description of the loaded document

VersionData nvarchar(500) Full path to the file, including the filename

PathOnClient nvarchar(255) The filename

ContentUrl nvarchar(255) Not Required for this example

FirstPublishLocationId nchar(18)

If left blank this will automatically be set as the

load User's User.Id, otherwise you can specify a

User or Object (i.e. the "Parent" record, for

example Account). Alternatively, you can specify

a Library (a ContentWorkspace).

In this example, we will set the FirstPublishLocationId as an Account record, this will automatically set

the “Parent” as this Account record, i.e. a ContentDocumentLink record will be automatically created

with the LinkedEntityId set as the Account.Id.

Additionally in this example, we could set the ContentVersion.OwnerId as a User other than the load

user. This will automatically create a second ContentDocumentLink record where the LinkedEntityId

is set as the User.Id used in the ContentVersion.OwnerId.

If no ContentVersion.OwnerId is set, the default will be set as the load user (i.e. the username defined

in the given Environment). If the load user is not set as the ContentVersion.OwnerId then it will be

more challenging retrieving (replicating) the ContentVersion records just inserted, as the load user

will not have sufficient permissions (as no entry in ContentDocumentLink will exist).

Example

drop table if exists ContentVersion_Insert

create table ContentVersion_Insert

(Id nchar(18)

 105 | P a g e

,Error nvarchar(255)

,Title nvarchar(255)

,ContentDocumentId nchar(18)

,Origin char(1)

,ContentLocation char(1)

,OwnerId nchar(18)

,Description nvarchar(255)

,VersionData nvarchar(500)

,PathOnClient nvarchar(255)

,FirstPublishLocationId nchar(18))

insert ContentVersion_Insert

(Title

,Origin

,ContentLocation

,Description

,VersionData

,PathOnClient

,FirstPublishLocationId)

select

'pdf example' --Title

,'C' --Origin

,'S' --ContentLocation

,'Example of loading a pdf from a file' --Description

,'C:\SQLSales\files\File Test1.pdf' --VersionData

,'File Test1.pdf' --PathOnClient

,'0018d00000cjHAvAAM' --FirstPublishLocationId

union select

'docx example' --Title

,'C' --Origin

,'S' --ContentLocation

,'Example of loading a docx from a file' --Description

,'C:\SQLSales\files\File Test2.docx' --VersionData

,'File Test2.docx' --PathOnClient

,'0018d00000cjHAvAAM' --FirstPublishLocationId

union select

'xlsx example' --Title

,'C' --Origin

,'S' --ContentLocation

,'Example of loading a xlsx from a file' --Description

,'C:\SQLSales\files\File Test3.xlsx' --VersionData

,'File Test3.xlsx' --PathOnClient

,'0018d00000cjHAvAAM' --FirstPublishLocationId

union select

'jpg example' --Title

,'C' --Origin

,'S' --ContentLocation

,'Example of loading a jpg from a file' --Description

,'C:\SQLSales\files\File Test4.jpg' --VersionData

,'File Test4.jpg' --PathOnClient

,'0018d00000cjHAvAAM' –FirstPublishLocationId

 106 | P a g e

Running the example

exec ss_Loader 'insert','demo','ContentVersion_Test1_Insert'

SQL-SALES insert run date: 2023-11-11 ---------------------------

21:19:39: Using Env|Schema: demo|dbo

21:19:39: Starting Loader for ContentVersion batchsize 200

21:19:39: SSId added to ContentVersion_Test1_Insert

21:19:42: Connection method BULK & SOAP API

21:19:42: Columns checked against Salesforce metadata

21:19:47: Load complete: Success:4 Failure:0

Shown in Salesforce:

 107 | P a g e

ContentVersion (External link only, not held in Salesforce)

An alternative approach is to load only links to Content held outside of Salesforce.

As with the previous standard approach, by default, from installation, SQL Sales assumes you will be

loading via the standard api approach of passing in a location of a file. Ensure the configuration of

your given Environment is as below:

In the example to follow, there is no authentication required to access the external file however an

ExternalDataSource will still need to be defined in our development Org. In practise you may need

to setup more involved security for your use case, which is covered by Salesforce documentation.

"HiDrive" is just a third party host provider that SQL-Sales uses but this could be any Content host

external to Salesforce.

The following screen shows an ExternalDataSource being added in Salesforce setup.

 108 | P a g e

This precursor step is necessary as the resultant ExternalDataSource.Id is required in the

ContentVersion payload to follow. Once you have added in Salesforce, replicate back to SQL with:

exec ss_Replica 'demo', 'ExternalDataSource'

Your ContentVersion payload table must contain these fields

Field Datatype Purpose
Id nchar(18) null on the insert payload

Error nvarchar(255) null on the insert payload

Title nvarchar(255) Title of the loaded document

Origin char(1) H = Chatter, but also for outside of Salesforce

ContentLocation char(1) E = Document is outside of Salesforce

Description nvarchar(255) Description of the loaded document

ContentUrl nvarchar(255) Full url to the Content

ExternalDocumentInfo1 nvarchar(255) Full url to the Content

ExternalDataSourceId nchar(18)
(ExternalDataSource.Id from the earlier setup in

Salesforce)

FirstPublishLocationId nchar(18)

If left blank this will automatically be set as the

load User's User.Id, otherwise you can specify a

User or Object (i.e. the "Parent" record, for

example Account). Alternatively, you can specify

a Library (a ContentWorkspace).

In this example, we will set the FirstPublishLocationId as an Account record, this will automatically set

the “Parent” as this Account record, i.e. a ContentDocumentLink record will be automatically created

with the LinkedEntityId set as the Account.Id.

Additionally in this example, we could set the ContentVersion.OwnerId as a User other than the load

user. This will automatically create a second ContentDocumentLink record where the LinkedEntityId

is set as the User.Id used in the ContentVersion.OwnerId.

If no ContentVersion.OwnerId is set, the default will be set as the load user (i.e. the username defined

in the given Environment). If the load user is not set as the ContentVersion.OwnerId then it will be

more challenging retrieving (replicating) the ContentVersion records just inserted, as the load user

will not have sufficient permissions (as no entry in ContentDocumentLink will exist).

 109 | P a g e

Example

drop table if exists ContentVersion_ExternalTest_Insert

create table ContentVersion_ExternalTest_Insert

(Id nchar(18)

,Error nvarchar(255)

,Title nvarchar(255)

,ContentDocumentId nchar(18)

,Origin char(1)

,ContentLocation char(1)

,OwnerId nchar(18)

,Description nvarchar(255)

,ContentUrl nvarchar(255)

,ExternalDocumentInfo1 nvarchar(255)

,ExternalDataSourceId nvarchar(255)

,FirstPublishLocationId nchar(18))

insert ContentVersion_ExternalTest_Insert

(Title

,Origin

,ContentLocation

,Description

,ContentUrl

,ExternalDocumentInfo1

,ExternalDataSourceId

,FirstPublishLocationId)

select

'image example remote' --Title

,'H' --Origin

,'E' --ContentLocation

,'Example of linking to external Content' --Description

,'https://hidrive.ionos.com/lnk/JQGN0ptz' as ContentUrl

,'https://hidrive.ionos.com/lnk/JQGN0ptz' as ExternalDocumentInfo1

,'0XC8d0000000Gi0GAE' as ExternalDataSourceId

,'0018d00000P4XctAAF' FirstPublishLocationId

Running the example

exec ss_Loader 'insert','demo','ContentVersion_ExternalTest_Insert'

SQL-SALES insert run date: 2024-01-12 ---------------------------

23:20:07: Using Env|Schema: demo|dbo

23:20:07: Starting Loader for ContentVersion batchsize 200

23:20:07: SSId added to ContentVersion_ExternalTest_Insert

23:20:10: Connection method BULK & SOAP API

23:20:10: Columns checked against Salesforce metadata

23:20:10: Starting load for ContentVersion_ExternalTest_Insert

23:20:13: Load complete: Success:1 Failure:0

 110 | P a g e

Shown in Salesforce:

 111 | P a g e

Working with ContentDocumentLink

Earlier, it was mentioned there will be permissions issues accessing ContentVersion data if the load

user is not present in ContentDocumentLink for a given ContentDocument that is required (when

pulling via ss_Replica or ss_Delta).

exec ss_Replica 'demo', 'ContentDocumentLink','LinkedEntityId','0018d00000cjHAvAAM'

select * from ContentDocumentLink

It is recommended to read up on the ContentDocumentLink section in this guide. As a shortcut, here

we have passed in the AccountId used in this example. This returns the 4 ContentDocumentIds for

the four loaded files.

exec ss_Replica 'demo',

'ContentDocumentLink','ContentDocumentId','0698d00000PZ4zYAAT,0698d00000PZ4zZAAT,0698d00000PZ4zaA

AD,0698d00000PZ4zbAAD'

select * from ContentDocumentLink

Here we see all linked entities for the ContentDocumentIds passed in.

 112 | P a g e

ContentVersion (from data to a file held in Salesforce)

The alternative method which SQL Sales has made possible, is to load SQL Server data to

ContentVersion, without the need for a file of the document to be referenced as with the previous

approach.

You will have to ensure the configuration of your given Environment is as below (as the data will be

loaded as data and not from a file):

In this example, we will be taking the existing base64 binary data directly from SQL Server, in this

case from the ContentVersion.VersionData varbinary(max) data from the previously loaded examples.

Existing base64 example

drop table if exists ContentVersion_Test2_Insert

select

convert(nchar(18),null) as Id

,convert(nvarchar(255),null) as Error

,convert(nvarchar(255),'File Test2 Title (from ' + Title + ')') as Title

,PathOnClient

,convert(varchar(max),CAST(N'' AS

XML).value('xs:base64Binary(xs:hexBinary(sql:column("VersionData")))', 'varchar(max)')) as

VersionData

into ContentVersion_Test2_Insert

from ContentVersion

where Description like 'Example of loading a % from a file'

Running the example

exec ss_Loader 'insert','demo','ContentVersion_Test2_Insert'

SQL-SALES insert run date: 2023-11-11 ---------------------------

22:04:15: Using Env|Schema: demo|dbo

22:04:15: Starting Loader for ContentVersion batchsize 200

22:04:15: SSId added to ContentVersion_Test2_Insert

22:04:18: Connection method BULK & SOAP API

22:04:18: Columns checked against Salesforce metadata

22:04:22: Load complete: Success:4 Failure:0

Note, PathOnClient is mandatory for VersionData, hence included in this example

 113 | P a g e

Shown in Salesforce:

 114 | P a g e

Bulk API
The Salesforce Bulk API allows batches of data to be submitted to Salesforce for processing

asynchronously to the running of the ss_Loader stored procedure (i.e. once the data payload is

delivered you do not need to concern yourself with the immediate stored procedure process

completing. There are pros and cons to this api, vs the standard web services SOAP api (which runs

synchronously to your ss_Loader stored procedure).

The main advantage of the Bulk API is for handling large volumes of data that you’d prefer to pass

up to Salesforce and leave for Salesforce to process. The main disadvantage is that the overhead

associated with checking the load is not as seamless as the SOAP API (i.e. the operations Insert,

Update, Delete, Undelete, Upsert which have been considered thus far are all via the SOAP API). The

following sections are going to consider the same operations.

Version 1 of the Bulk API is the original version and still fully supported by Salesforce. The main

different to the later Version 2 is that whilst a specified batchsize as such is not supported in v1, SQL

Sales can control the size of each submitted batch (as V1 allows this specification), thereby in effect

allowing a batchsize to be defined. Version 1 also allows a concurrency mode to be specified (i.e.

either Serial or Parallel). Some use cases of submitting data against objects that have a lot of

associated code, may encounter a higher chance of failure (Salesforce apex code, triggers, workflows,

governor limits etc, nothing to do with SQL Sales), for such objects it can be safer to submit serially

rather than in parallel, but each use case needs to be judged on its own merits. Version 1 is also

more predictable in terms of how batches are created, which allows (for Inserts) SQL Sales to tie a

response batch of new Ids back to the submitted data (in a similar way to the SOAP API Insert

operation), provided the “WAIT” switch is employed.

Version 2 is more “automatic” in the sense you cannot specific how to define the contents of a given

batch (Salesforce will decide if this will be spit across multiple batches or contained within one

batch), as such batchsize is not supported with the Bulk API Version 2. Similarly, concurrency mode

(Serial/Parallel) is not controllable as Salesforce again defines how a given batch or set of batches will

be processed. Finally, Version 2 has no set way of predicting how a batch of responses will be

returned vs how they were submitted, hence Bulk API Inserts cannot be tied back to the submitted

data payload, even with the WAIT switch. This will therefore have to be done by the User, keying the

Note, the SOAP API does not support Harddelete, conversely the Bulk API does not support
Undelete

 115 | P a g e

payload by for example an embedded key field that is part of the given target Salesforce object field

definition. For example if you have a field “CustomId__c” on the given object and you pass in an

appropriate custom Id as part of your BulkAPIv2Insert, when replicating the data back (via ss_Replica

or ss_Delta) you can analyse how your Bulk API V2 has behaved.

These key differences will be reflected in the subtle switch differences in the following Version 1 vs

Version 2 documented operations.

 116 | P a g e

BulkAPIv1Insert

Create a load table Example (WAIT)

This example creates a load table called "Account_BulkAPIv1_Wait_Serial_Example_Insert". The Id and

Error columns are mandatory, as this is an Insert there is nothing to add into Id, but it needs to be

provided, as the resultant created record Id will be passed back on creation. All load operations

require the Error column, whether success or failure, to guide and inform you.

WAIT means the SQL process will remain live while it waits for the Bulk API to return all responses.

As the batches are created in v1 predictably, the responses can be tied back to the initial Insert

payload and hence behave in a similar way to the SOAP API, in other words, the success/failure Error

outcome will be posted back to the load table’s Error column.

SERIAL is how the Bulk API will internally process the created batches, Serial means one at a time

which is a least stressful way to submit the batches (not that this should actually make a difference,

however in some edge cases, particularly on complex objects with lots of config and code,

submitting in parallel mode can cause threshold/governor limit failures).

PARALLEL is how the Bulk API will internally process the created batches, Parallel means that SQL

Sales will submit as many batches to Salesforce as necessary according to the provided batchsize

specified. Salesforce will process the batches potentially all in parallel, although in reality they should

be processed as quickly as they can (still likely at least partially in parallel) according to the governor

limits defined in your Salesforce instance.

drop table if exists Account_BulkAPIv1_Wait_Serial_Insert

select top 100

convert(nchar(18),null) as Id

,convert(nvarchar(255),null) as Error

,'DEMO__PREFIX' + Name as Name

,Name as Name_Info

,AccountNumber as AccountNumber_Info

into Account_BulkAPIv1_Wait_Serial_Insert

from Account

 117 | P a g e

Running the example

(Pass WAIT:PARALLEL for Parallel requirements)

exec ss_Loader 'BulkAPIv1Insert', 'DEMO', 'Account_BulkAPIv1_Wait_Serial_Insert','WAIT:SERIAL'

SQL-SALES BulkAPIv1Insert run date: 2023-12-08 ------------------

20:30:00: Using Env|Schema: DEMO|dbo

20:30:00: Starting Loader for Account batchsize 10000

20:30:00: SSId added to Account_BulkAPIv1_Wait_Serial_Insert

20:30:02: Connection method BULK & BULK API

20:30:02: Bulk API method WAIT:SERIAL

20:30:02: Columns checked against Salesforce metadata

20:30:03: Starting load for Account_BulkAPIv1_Wait_Serial_Insert

20:30:16: JobId: 7508d00000TtMlOAAV

20:30:17: Excluded: AccountNumber_Info is not available on object Account

20:30:17: Excluded: Name_Info is not available on object Account

20:30:17: Load complete: Success:100 Failure:0

_Return helper table

The batch to which a given row has been allocated is logged in the helper table created in the run

that is your load table + “_Return”, using the above example it is:

Account_BulkAPIv1_Wait_Serial_Insert_Return

As with the Insert load table itself, the newly created Id (via the BulkAPIv1Insert operation) is also

provided as well as the Error column, paired with the originally submitted SSId).

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

 118 | P a g e

ss_BulkAPILog table

The Job Id is also preserved in the ss_BulkAPILog table, written on each submission. Batch detail is

not maintained on WAIT methods.

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column and

as with the SOAP API Insert operation, with BulkAPIv1Insert SQL Sales is able to pass back the newly

created Id, paired with the submitted SSId.

Create a load table Example (BACK)

(Refer to previous sections for details on SERIAL and PARALLEL options)

This example creates a load table called "Account_BulkAPIv1_BACK_Serial_Insert". The Id and Error

columns are mandatory as with all Loader tables although with a BACK method, they will not be

written back following the Insert.

BACK (specifies BACKGROUND running) means the SQL process will submit the load data in the

batches specified by batchsize, however unlike the WAIT method, the ss_Loader run will end once

that’s done as the use case here is that no further action is required on the part of the User (i.e.

submitting the data to the Salesforce Bulk API is sufficient enough for the job in hand). If you need

to examine the success/failure of the submitted rows, there is a follow up script you can run to have

the response data returned to SQL Server and your load table (instructions follow in this section).

drop table if exists Account_BulkAPIv1_BACK_Serial_Insert

select top 100

convert(nchar(18),null) as Id

,convert(nvarchar(255),null) as Error

,'DEMO__PREFIX' + Name as Name

,Name as Name_Info

,AccountNumber as AccountNumber_Info

 119 | P a g e

into Account_BulkAPIv1_BACK_Serial_Example_Insert

from Account

Running the example (Step 1)

exec ss_Loader 'BulkAPIv1Insert(50)', 'DEMO',

'Account_BulkAPIv1_BACK_Serial_Insert','BACK:SERIAL'

SQL-SALES BulkAPIv1Insert(50) run date: 2023-12-09 --------------

07:47:44: Using Env|Schema: DEMO|dbo

07:47:44: Starting Loader for Account batchsize 50

07:47:44: SSId added to Account_BulkAPIv1_BACK_Serial_Insert

07:47:47: Connection method BULK & BULK API

07:47:47: Bulk API method BACK:SERIAL

07:47:47: Columns checked against Salesforce metadata

07:47:47: Starting load for Account_BulkAPIv1_BACK_Serial_Insert

07:48:01: JobId: 7508d00000TtQjVAAV

07:48:01: BatchId: 7518d00000dBwxRAAS CreatedDate: 2023-12-09 07:47:48

07:48:01: BatchId: 7518d00000dBwe6AAC CreatedDate: 2023-12-09 07:47:49

07:48:01: BulkAPIv1Insert BACKGROUND completed successfully

ss_BulkAPILog table

The Job Id is also preserved in the ss_BulkAPILog table, written on each submission, for BACK

methods, Batch information (Id and CreatedDate) is also written.

Running the example (Step 2 Option 1)

At any time after you have run the initial BACK, you can retrieve processed rows by reverting to using

the WAIT method (either in SERIAL or PARALLEL mode). This is achieved by passing in the known

Job Id into the @Special2 input parameter.

Note for the purposes of this test example, a batchsize of (50) has been defined, given the
payload is 100 rows, this will force the creation of two batches, to illustrate the handling of
multiple batches

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

Note unlike the WAIT method, simply running BACK will not populate the _Result table nor write
back Id or Error data to your load table, see the next set of instructions for how to do this,
however the Batch Id(s) are included in the output dump for information purposes

 120 | P a g e

exec ss_Loader 'BulkAPIv1Insert', 'DEMO',

'Account_BulkAPIv1_BACK_Serial_Insert','JOB:WAIT:SERIAL','7508d00000TtQjVAAV'

SQL-SALES BulkAPIv1Insert run date: 2023-12-09 ------------------

08:05:12: Using Env|Schema: DEMO|dbo

08:05:12: Starting Loader for Account batchsize 10000

08:05:12: SSId added to Account_BulkAPIv1_BACK_Serial_Insert

08:05:15: Connection method BULK & BULK API

08:05:15: Bulk API method JOB:WAIT:SERIAL Job = 7508d00000TtQjVAAV

08:05:15: Columns checked against Salesforce metadata

08:05:15: Starting load for Account_BulkAPIv1_BACK_Serial_Insert

08:05:19: JobId: 7508d00000TtQjVAAV

08:05:19: Excluded: AccountNumber_Info is not available on object Account

08:05:19: Excluded: Name_Info is not available on object Account

08:05:19: Load complete: Success:100 Failure:0

_Return helper table

The batch to which a given Id has been allocated is logged in the helper table created in the run that

is your load table + “_Return”, using the above example it is:

Account_BulkAPIv1_BACK_Serial_Insert_Return

As with the Insert load table itself, the newly created Id (via the BulkAPIv1Insert operation) is also

provided as well as the Error column, although for Insert and Upsert operations, these rows do not

correlate to your load table, you would have to run with the WAIT method if you require this. For

Note, when using “Option 1” if you have attempted to return processed rows “too soon” and
some rows for a given Batch or Batches are not yet processed by Salesforce, SQL Sales will not
be able to return an Id and Error value hence caution should be exercised and for you to check
your load table.

Alternatively, you can use “Option 2” to check the status of your Job by submitting a followup
BACK request, alongside your known Job Id. This will instruct SQL Sales to check all related
Batches and return the status of the Job Id. When the Job is Closed, no further processing will
occur by Salesforce and you can now run with WAIT to return all Id and Error values.

Note, running WAIT subsequently to the initial BACK for Update, Delete, Harddelete operations
will return load status values to the Load table Error column. Whereas for Insert or Upsert, this
is not possible, however for all operations, the _Return table is written back to, including new Ids
and Error column values in the case of Insert or Upsert. The key difference is that the newly
created or upserted to Ids are not tied back to the original load table row.

 121 | P a g e

Update, Delete and Harddelete operations, the Result rows will correspond directly with your load

table rows.

Checking the load table (Update, Delete, Harddelete)

The success or failure errors for each row will be automatically written back to the Error column and

as with the SOAP API Insert operation, with BulkAPIv1Insert SQL Sales is able to pass back the newly

created Id, paired with the submitted SSId.

Running the example (Step 2 Option 2)

You can keep submitting with BACK and the known Job Id until the Status shows that the Job has

Closed (this will work with either SERIAL or PARALLEL). Once the Job is Closed you can run as with

Option 1.

exec ss_Loader 'BulkAPIv1Insert(50)', 'DEMO',

'Account_BulkAPIv1_BACK_Serial_Insert','JOB:BACK:SERIAL','7508d00000TtQjVAAV'

SQL-SALES BulkAPIv1Insert(50) run date: 2023-12-09 --------------

08:41:26: Using Env|Schema: DEMO|dbo

08:41:26: Starting Loader for Account batchsize 50

08:41:26: SSId added to Account_BulkAPIv1_BACK_Serial_Insert

08:41:28: Connection method BULK & BULK API

08:41:28: Bulk API method JOB:BACK:SERIAL Job = 7508d00000TtQjVAAV

08:41:28: Columns checked against Salesforce metadata

08:41:29: Starting load for Account_BulkAPIv1_BACK_Serial_Insert

08:41:32: JobId: 7508d00000TtQjVAAV, Job Closed

08:41:32: BulkAPIv1Insert BACKGROUND completed successfully

BulkAPIv1Update

Create a load table Example (WAIT)

(Refer to previous sections for details on SERIAL and PARALLEL options as well as WAIT and BACK

methods).

This example creates a load table called "Account_BulkAPIv1_Wait_Serial_Update". The Id and Error

columns are mandatory. Generally, an update payload would be built up from querying or working

 122 | P a g e

with prior replicated data for the affected Object by using ss_Replica / ss_Delta. All load operations

require the Error column, whether success or failure, to guide and inform you.

drop table if exists Account_BulkAPIv1_Wait_Serial_Update

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Id as AccountNumber

,AccountNumber as AccountNumber_Orig

into Account_BulkAPIv1_Wait_Serial_Update

from Account

where AccountNumber is null

order by createddate desc

Running the example

exec ss_Loader 'BulkAPIv1Update', 'DEMO', 'Account_BulkAPIv1_Wait_Serial_Update','WAIT:SERIAL'

SQL-SALES BulkAPIv1Update run date: 2023-12-09 ------------------

09:00:16: Using Env|Schema: DEMO|dbo

09:00:16: Starting Loader for Account batchsize 10000

09:00:16: SSId added to Account_BulkAPIv1_Wait_Serial_Update

09:00:19: Connection method BULK & BULK API

09:00:19: Bulk API method WAIT:SERIAL

09:00:19: Columns checked against Salesforce metadata

09:00:19: Starting load for Account_BulkAPIv1_Wait_Serial_Update

09:00:34: JobId: 7508d00000TtQsPAAV

09:00:34: Excluded: AccountNumber_Orig is not available on object Account

09:00:34: Load complete: Success:100 Failure:0

_Return helper table

The batch to which a given row has been allocated is logged in the helper table created in the run

that is your load table + “_Return”, using the above example it is:

Account_BulkAPIv1_Wait_Serial_Update_Return

As with the Update load table itself, the Error column is provided, paired with the originally

submitted SSId.

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

 123 | P a g e

ss_BulkAPILog table

The Job Id is also preserved in the ss_BulkAPILog table, written on each submission.

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column as

with the SOAP API Update operation.

Create an Update load table Example (BACK)

(Refer to previous sections for details on SERIAL and PARALLEL options)

This example creates a load table called "Account_BulkAPIv1_BACK_Serial_Update". The Id and Error

columns are mandatory. All load operations require the Error column, whether success or failure, to

guide and inform you.

 124 | P a g e

exec ss_Delta 'DEMO', 'Account'

drop table if exists Account_BulkAPIv1_BACK_Serial_Update

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Id as AccountNumber

,AccountNumber as AccountNumber_Orig

into Account_BulkAPIv1_BACK_Serial_Update

from Account

where AccountNumber is null

order by createddate desc

Running the example (Step 1)

exec ss_Loader 'BulkAPIv1Update', 'DEMO', 'Account_BulkAPIv1_BACK_Serial_Update','BACK:SERIAL'

SQL-SALES BulkAPIv1Update run date: 2023-12-09 ------------------

09:09:32: Using Env|Schema: DEMO|dbo

09:09:32: Starting Loader for Account batchsize 10000

09:09:32: SSId added to Account_BulkAPIv1_BACK_Serial_Update

09:09:35: Connection method BULK & BULK API

09:09:35: Bulk API method BACK:SERIAL

09:09:35: Columns checked against Salesforce metadata

09:09:35: Starting load for Account_BulkAPIv1_BACK_Serial_Update

09:09:48: JobId: 7508d00000TtR82AAF

09:09:48: BatchId: 7518d00000dBxFdAAK CreatedDate: 2023-12-09 09:09:36

09:09:48: BulkAPIv1Update BACKGROUND completed successfully

ss_BulkAPILog table

The Job Id is also preserved in the ss_BulkAPILog table, written on each submission.

Running the example (Step 2 Option 1)

At any time after you have run the initial BACK, you can retrieve processed rows to your load table by

reverting back to using the WAIT method (either in SERIAL or PARALLEL mode). This is achieved by

passing in the known Job Id into the @Special2 input parameter.

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

Note unlike the WAIT method, simply running BACK will not populate the _Result table nor write
back Error data to your load table, see the next set of instructions for how to do this, however the
Batch Id(s) are included in the output dump for information purposes

 125 | P a g e

exec ss_Loader 'BulkAPIv1Update', 'DEMO',

'Account_BulkAPIv1_BACK_Serial_Update','JOB:WAIT:SERIAL','7508d00000TtR82AAF'

SQL-SALES BulkAPIv1Update run date: 2023-12-09 ------------------

09:13:41: Using Env|Schema: DEMO|dbo

09:13:41: Starting Loader for Account batchsize 10000

09:13:41: SSId added to Account_BulkAPIv1_BACK_Serial_Update

09:13:44: Connection method BULK & BULK API

09:13:44: Bulk API method JOB:WAIT:SERIAL Job = 7508d00000TtR82AAF

09:13:44: Columns checked against Salesforce metadata

09:13:44: Starting load for Account_BulkAPIv1_BACK_Serial_Update

09:13:48: JobId: 7508d00000TtR82AAF, Job Closed

09:13:49: Excluded: AccountNumber_Orig is not available on object Account

09:13:49: Load complete: Success:100 Failure:0

_Return helper table

The batch to which a given row has been allocated is logged in the helper table created in the run

that is your load table + “_Batch”, using the above example it is:

Account_BulkAPIv1_BACK_Serial_Update_Return

As with the Update load table itself, the Error column is provided, paired with the originally

submitted SSId.

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column as

with the SOAP API Update operation.

Note, when using “Option 1” if you have attempted to return processed rows “too soon” and
some rows for a given Batch or Batches are not yet processed by Salesforce, SQL Sales will not
be able to return an Error value hence caution should be exercised and for you to check your
load table.

Alternatively, you can use “Option 2” to check the status of your Job by submitting a followup
BACK request, alongside your known Job Id. This will instruct SQL Sales to check all related
Batches and return the status of the Job Id. When the Job is Closed, no further processing will
occur by Salesforce and you can now run with WAIT to return all Id and Error values.

 126 | P a g e

Running the example (Step 2 Option 2)

You can keep submitting with BACK and the known Job Id until the Status shows that the Job has

Closed (this will work with either SERIAL or PARALLEL). Once the Job is Closed you can run as with

Option 1.

BulkAPIv1Delete

Create a load table Example (WAIT)

(Refer to previous sections for details on SERIAL and PARALLEL options as well as WAIT and BACK

methods).

This example creates a load table called "Account_BulkAPIv1_Wait_Serial_Delete". The Id and Error

columns are mandatory. Generally, a delete payload would be built up from querying or working

with prior replicated data for the affected Object by using ss_Replica / ss_Delta. All load operations

require the Error column, whether success or failure, to guide and inform you.

exec ss_Delta 'DEMO', 'Account'

drop table if exists Account_BulkAPIv1_Wait_Serial_Delete

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Name as Name_Info

into Account_BulkAPIv1_Wait_Serial_Delete

from Account

order by createddate desc

Running the example

exec ss_Loader 'BulkAPIv1Delete', 'DEMO', 'Account_BulkAPIv1_Wait_Serial_Delete','WAIT:SERIAL'

SQL-SALES BulkAPIv1Delete run date: 2023-12-09 ------------------

09:25:17: Using Env|Schema: DEMO|dbo

09:25:18: Starting Loader for Account batchsize 10000

09:25:18: SSId added to Account_BulkAPIv1_Wait_Serial_Delete

09:25:20: Connection method BULK & BULK API

09:25:20: Bulk API method WAIT:SERIAL

09:25:20: Columns checked against Salesforce metadata

09:25:21: Starting load for Account_BulkAPIv1_Wait_Serial_Delete

09:25:35: JobId: 7508d00000TtRBUAA3

09:25:35: Load complete: Success:100 Failure:0

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

 127 | P a g e

_Return helper table

The batch to which a given row has been allocated is logged in the helper table created in the run

that is your load table + “_Batch”, using the above example it is:

Account_BulkAPIv1_Wait_Serial_Delete_Return

As with the Delete load table itself, the Error column is provided, paired with the originally submitted

SSId.

ss_BulkAPILog table

The Job Id is also preserved in the ss_BulkAPILog table, written on each submission.

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column as

with the SOAP API Delete operation.

 128 | P a g e

Create a load table Example (BACK)

(Refer to previous sections for details on SERIAL and PARALLEL options)

This example creates a load table called "Account_BulkAPIv1_BACK_Serial_Delete". The Id and Error

columns are mandatory. All load operations require the Error column, whether success or failure, to

guide and inform you.

exec ss_Delta 'DEMO', 'Account'

drop table if exists Account_BulkAPIv1_BACK_Serial_Delete

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Name as Name_Info

into Account_BulkAPIv1_BACK_Serial_Delete

from Account

order by createddate desc

Running the example (Step 1)

exec ss_Loader 'BulkAPIv1Delete', 'DEMO', 'Account_BulkAPIv1_BACK_Serial_Delete','BACK:SERIAL'

SQL-SALES BulkAPIv1Delete run date: 2023-12-09 ------------------

19:35:22: Using Env|Schema: DEMO|dbo

19:35:22: Starting Loader for Account batchsize 10000

19:35:22: SSId added to Account_BulkAPIv1_BACK_Serial_Delete

19:35:25: Connection method BULK & BULK API

19:35:25: Bulk API method BACK:SERIAL

19:35:25: Columns checked against Salesforce metadata

19:35:26: Starting load for Account_BulkAPIv1_BACK_Serial_Delete

19:35:39: JobId: 7508d00000TtTgVAAV

19:35:39: BatchId: 7518d00000dC1LzAAK CreatedDate: 2023-12-09 19:35:29

19:35:39: BulkAPIv1Delete BACKGROUND completed successfully

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

Note unlike the WAIT method, simply running BACK will not populate the _Result table nor write
back Error data to your load table, see the next set of instructions for how to do this, however the
Batch Id(s) are included in the output dump for information purposes

 129 | P a g e

ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Running the example (Step 2 Option 1)

At any time after you have run the initial BACK, you can retrieve processed rows to your load table by

reverting back to using the WAIT method (either in SERIAL or PARALLEL mode). This is achieved by

passing in the known Job Id into the @Special2 input parameter.

exec ss_Loader 'BulkAPIv1Delete', 'DEMO',

'Account_BulkAPIv1_BACK_Serial_Delete','JOB:WAIT:SERIAL','7508d00000TtTgVAAV'

SQL-SALES BulkAPIv1Delete run date: 2023-12-09 ------------------

19:41:47: Using Env|Schema: DEMO|dbo

19:41:47: Starting Loader for Account batchsize 10000

19:41:48: SSId added to Account_BulkAPIv1_BACK_Serial_Delete

19:41:50: Connection method BULK & BULK API

19:41:50: Bulk API method JOB:WAIT:SERIAL Job = 7508d00000TtTgVAAV

19:41:50: Columns checked against Salesforce metadata

19:41:51: Starting load for Account_BulkAPIv1_BACK_Serial_Delete

19:41:54: JobId: 7508d00000TtTgVAAV, Job Closed

19:41:54: Load complete: Success:100 Failure:0

_Return helper table

The batch to which a given row has been allocated is logged in the helper table created in the run

that is your load table + “_Batch”, using the above example it is:

Account_BulkAPIv1_BACK_Serial_Delete_Return

As with the Delete load table itself, the Error column is provided, paired with the originally submitted

SSId.

Note, when using “Option 1” if you have attempted to return processed rows “too soon” and
some rows for a given Batch or Batches are not yet processed by Salesforce, SQL Sales will not
be able to return an Error value hence caution should be exercised and for you to check your
load table.

Alternatively, you can use “Option 2” to check the status of your Job by submitting a followup
BACK request, alongside your known Job Id. This will instruct SQL Sales to check all related
Batches and return the status of the Job Id. When the Job is Closed, no further processing will
occur by Salesforce and you can now run with WAIT to return all Id and Error values.

 130 | P a g e

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column as

with the SOAP API Delete operation.

Running the example (Step 2 Option 2)

You can keep submitting with BACK and the known Job Id until the Status shows that the Job has

Closed (this will work with either SERIAL or PARALLEL). Once the Job is Closed you can run as with

Option 1.

 131 | P a g e

BulkAPIv1Harddelete

Create a load table Example (WAIT)

(Refer to previous sections for details on SERIAL and PARALLEL options as well as WAIT and BACK

methods).

exec ss_Delta 'DEMO', 'Account'

drop table if exists Account_BulkAPIv1_Wait_Serial_Harddelete

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Name as Name_Info

into Account_BulkAPIv1_Wait_Serial_Harddelete

from Account

order by createddate desc

Running the example

exec ss_Loader 'BulkAPIv1Harddelete', 'DEMO',

'Account_BulkAPIv1_Wait_Serial_Harddelete','WAIT:SERIAL'

SQL-SALES BulkAPIv1Harddelete run date: 2023-12-09 --------------

20:00:23: Using Env|Schema: DEMO|dbo

20:00:23: Starting Loader for Account batchsize 10000

20:00:23: SSId added to Account_BulkAPIv1_Wait_Serial_Harddelete

20:00:26: Connection method BULK & BULK API

20:00:26: Bulk API method WAIT:SERIAL

20:00:26: Columns checked against Salesforce metadata

20:00:26: Starting load for Account_BulkAPIv1_Wait_Serial_Harddelete

20:00:28: Failed to create job. Response: {'exceptionCode': 'FeatureNotEnabled',

'exceptionMessage': 'hardDelete operation requires special user profile permission, please

contact your system administrator'}

exec ss_Loader 'BulkAPIv1Harddelete', 'HARD',

'Account_BulkAPIv1_Wait_Serial_Harddelete','WAIT:SERIAL'

Note, by default a sys admin user will not have permission to run Harddelete, you will need a
special profile created (in fact cloned) from a system administrator and Hard delete enabled on
it, without this initial preparation you will encounter the above error message

A special Environment has been setup in this Demo, called “HARD” (which uses a different
username, with a Harddelete profile enabled

 132 | P a g e

SQL-SALES BulkAPIv1Harddelete run date: 2023-12-09 --------------

20:09:50: Using Env|Schema: HARD|dbo

20:09:50: Starting Loader for Account batchsize 10000

20:09:50: SSId added to Account_BulkAPIv1_Wait_Serial_Harddelete

20:09:53: Connection method BULK & BULK API

20:09:53: Bulk API method WAIT:SERIAL

20:09:53: Columns checked against Salesforce metadata

20:09:53: Starting load for Account_BulkAPIv1_Wait_Serial_Harddelete

20:10:07: JobId: 7508d00000TtTqeAAF

20:10:08: Load complete: Success:100 Failure:0

_Return helper table

The batch to which a given row has been allocated is logged in the helper table created in the run

that is your load table + “_Batch”, using the above example it is:

Account_BulkAPIv1_Wait_Serial_Harddelete_Return

The Error column is provided, paired with the originally submitted SSId.

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column.

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

 133 | P a g e

Create a load table Example (BACK)

(Refer to previous sections for details on SERIAL and PARALLEL options)

This example creates a load table called "Account_BulkAPIv1_BACK_Serial_Harddelete". The Id and

Error columns are mandatory. All load operations require the Error column, whether success or

failure, to guide and inform you.

exec ss_Delta 'DEMO', 'Account'

drop table if exists Account_BulkAPIv1_BACK_Serial_Harddelete

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Name as Name_Info

into Account_BulkAPIv1_BACK_Serial_Harddelete

from Account

order by createddate desc

 134 | P a g e

Running the example (Step 1)

exec ss_Loader 'BulkAPIv1Harddelete', 'HARD',

'Account_BulkAPIv1_BACK_Serial_Harddelete','BACK:SERIAL'

SQL-SALES BulkAPIv1Harddelete run date: 2023-12-09 --------------

20:21:44: Using Env|Schema: HARD|dbo

20:21:44: Starting Loader for Account batchsize 10000

20:21:44: SSId added to Account_BulkAPIv1_BACK_Serial_Harddelete

20:21:47: Connection method BULK & BULK API

20:21:47: Bulk API method BACK:SERIAL

20:21:47: Columns checked against Salesforce metadata

20:21:47: Starting load for Account_BulkAPIv1_BACK_Serial_Harddelete

20:21:59: JobId: 7508d00000TtTt4AAF

20:21:59: BatchId: 7518d00000dC1eHAAS CreatedDate: 2023-12-09 20:21:49

20:21:59: BulkAPIv1Harddelete BACKGROUND completed successfully

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Running the example (Step 2 Option 1)

At any time after you have run the initial BACK, you can retrieve processed rows to your load table by

reverting back to using the WAIT method (either in SERIAL or PARALLEL mode). This is achieved by

passing in the known Job Id into the @Special2 input parameter.

exec ss_Loader 'BulkAPIv1Harddelete', 'HARD',

'Account_BulkAPIv1_BACK_Serial_Harddelete','JOB:WAIT:SERIAL','7508d00000TtTt4AAF'

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

Note unlike the WAIT method, simply running BACK will not populate the _Return table nor write
back Error data to your load table, see the next set of instructions for how to do this, however the
Batch Id(s) are included in the output dump for information purposes

Note, when using “Option 1” if you have attempted to return processed rows “too soon” and
some rows for a given Batch or Batches are not yet processed by Salesforce, SQL Sales will not
be able to return an Error value hence caution should be exercised and for you to check your
load table.

Alternatively, you can use “Option 2” to check the status of your Job by submitting a followup
BACK request, alongside your known Job Id. This will instruct SQL Sales to check all related
Batches and return the status of the Job Id. When the Job is Closed, no further processing will
occur by Salesforce and you can now run with WAIT to return all Id and Error values.

 135 | P a g e

SQL-SALES BulkAPIv1Harddelete run date: 2023-12-09 --------------

20:26:05: Using Env|Schema: HARD|dbo

20:26:05: Starting Loader for Account batchsize 10000

20:26:05: SSId added to Account_BulkAPIv1_BACK_Serial_Harddelete

20:26:08: Connection method BULK & BULK API

20:26:08: Bulk API method JOB:WAIT:SERIAL Job = 7508d00000TtTt4AAF

20:26:08: Columns checked against Salesforce metadata

20:26:08: Starting load for Account_BulkAPIv1_BACK_Serial_Harddelete

20:26:12: JobId: 7508d00000TtTt4AAF, Job Closed

20:26:12: Load complete: Success:100 Failure:0

_Return helper table

The batch to which a given row has been allocated is logged in the helper table created in the run

that is your load table + “_Return”, using the above example it is:

Account_BulkAPIv1_BACK_Serial_Harddelete_Return

As with the Update and Delete operation load table itself, the Error column is provided, paired with

the originally submitted SSId.

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column.

Running the example (Step 2 Option 2)

You can keep submitting with BACK and the known Job Id until the Status shows that the Job has

Closed (this will work with either SERIAL or PARALLEL). Once the Job is Closed you can run as with

Option 1.

 136 | P a g e

BulkAPIv1Upsert
As with the SOAP API Upsert, working with the Salesfore Bulk API v1 is a little different to the other

operations. BulkAPIv1Update, BulkAPIv1Delete and BulkAPIv1Harddelete work from the provided Id,

with regards what records to operate against. Insert merely creates new records and passes the new

Id back.

Whereas BulkAPIv1Upsert, as the name suggests, works primarily off a provided External Id for the

given object being upserted against.

If a match is found in that Salesforce object for the value being passed in, then the Operation will

update the provided fields in the table payload to the matched record.

If a match is not found, the Upsert operation will insert a new record, using the provided fields in the

table payload. All load operations require the Error column, whether success or failure, to guide and

inform you.

External Id

Upsert will only work against an External data type field. This is a special setting for a field in

Salesforce:

For this example, the field "External_Id__c" has been added to the Account object in our Demo Org,

note the special indicator "(External ID)". If your intended External Id field does not have this, it is

likely not actually setup as an External Id, no matter what the field name is.

SQL Sales will inform if it is not truly an External Id, this is demonstrated in the following examples.

https://downloads.intercomcdn.com/i/o/774587644/09ff1df0944ac5f947e1ece5/ss_Loader+upsert1.png
https://downloads.intercomcdn.com/i/o/774588044/fe7f3d02920476154e7fcdf1/ss_Loader+upsert2.png

 137 | P a g e

Create a load table Example (WAIT)

(Refer to previous sections for details on SERIAL and PARALLEL options as well as WAIT and BACK

methods).

This example creates a load table called "Account_BulkAPIv1_Wait_Serial_Upsert".

drop table if exists Account_BulkAPIv1_Wait_Serial_Upsert

select top 33

convert(nchar(18),null) as Id

,convert(nvarchar(255),null) as Error

,Name

,'UPDATE_TEST_' + Id as AccountNumber

,External_Id__c

,AccountNumber as AccountNumber_Orig

into Account_BulkAPIv1_Wait_Serial_Upsert

from Account

where AccountNumber not like '0%'

and External_Id__c is not null

order by createddate desc

insert Account_BulkAPIv1_Wait_Serial_Upsert

(Id

,Error

,Name

,AccountNumber

,External_Id__c

,AccountNumber_Orig)

select top 33

convert(nchar(18),null) --Id

,convert(nvarchar(255),null) --Error

,Name

,'REJECT_TEST_' + Id --AccountNumber

,null --External_Id__c

,null --AccountNumber_Orig

from Account

where AccountNumber not like '0%'

and External_Id__c is not null

order by createddate desc

insert Account_BulkAPIv1_Wait_Serial_Upsert

(Id

,Error

,Name

,AccountNumber

,External_Id__c

,AccountNumber_Orig)

select top 33

convert(nchar(18),null) --Id

,convert(nvarchar(255),null) --Error

,Name

,'INSERT_TEST_' + Id --AccountNumber

,'INSERT_TEST_' + Id --AExternal_Id__c

,null --AccountNumber_Orig

from Account

where AccountNumber not like '0%'

and External_Id__c is not null

order by createddate desc

 138 | P a g e

Check the Payload

Note, those records with a matched (to Salesforce) value in External_Id__c will result in an update,

those with a new value but no match to Salesforce will result in an Insert, whereas those with no

value in External_Id__c will be rejected (as External_Id__c, being the specified External Id field for the

BulkAPIv1Upsert operation, es expected to be populated).

Running the example (incorrect)

exec ss_Loader 'BulkAPIv1Upsert', 'DEMO', 'Account_BulkAPIv1_Wait_Serial_Upsert','WAIT:SERIAL'

SQL-SALES BulkAPIv1Upsert run date: 2023-12-09 ------------------

20:47:17: Using Env|Schema: DEMO|dbo

20:47:17: Provided Upsert Operation value not in the correct format, for a hypothetical field

called "External_Id__c"

20:47:17: set (in Salesforce) as an External Id (this is a field setting)

20:47:17: the expected input value for the standard web services API is:

Upsert:XId=External_Id__c

20:47:17: or BulkAPIv1Upsert:XId=External_Id__c for the bulk API v1

20:47:17: or BulkAPIv2Upsert:XId=External_Id__c for the bulk API v2

20:47:17: with a defined batchsize (for example 100 or 1000 respectively) these would be:

20:47:17: Upsert(100):XId=External_Id__c | BulkAPIv1Upsert(10000):XId=External_Id__c |

BulkAPIv2Upsert(2000):XId=External_Id__c

20:47:17: Note, the provided External Id is validated directly against Salesforce Account

20:47:17: prior to the run commencing to check it is actually defined as an External Id.

Note, the format provided in the example is incorrect, observe the supporting help text

 139 | P a g e

Running the example (correct)

exec ss_Loader 'BulkAPIv1Upsert:XId=External_Id__c', 'DEMO',

'Account_BulkAPIv1_Wait_Serial_Upsert','WAIT:SERIAL'

SQL-SALES BulkAPIv1Upsert:XId=External_Id__c run date: 2023-12-09

20:47:51: Using Env|Schema: DEMO|dbo

20:47:54: Starting Loader for Account batchsize 10000

20:47:54: SSId added to Account_BulkAPIv1_Wait_Serial_Upsert

20:47:57: Connection method BULK & BULK API

20:47:57: Bulk API method WAIT:SERIAL

20:47:57: Columns checked against Salesforce metadata

20:47:57: Starting load for Account_BulkAPIv1_Wait_Serial_Upsert

20:48:11: JobId: 7508d00000TtTzbAAF

20:48:12: Excluded: AccountNumber_Orig is not available on object Account

20:48:12: Load complete: Success:66 Failure:33

_Return helper table

The batch to which a given row has been allocated is logged in the helper table created in the run

that is your load table + “_Return”, using the above example it is:

Account_BulkAPIv1_Wait_Serial_Upsert_Return

For the load table itself as this was run with WAIT, the Error column is provided, paired with the

originally submitted SSId.

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

 140 | P a g e

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column as

with the SOAP API Update operation.

Further uses

Refer to the worked examples shown for the other BulkAPIv1 operations, they would equally apply to

BulkAPIv1Upsert, ensure you take note of the guidance regarding the use of the XId switch.

 141 | P a g e

BulkAPIv2Insert

Create a load table Example (WAIT)

This example creates a load table called "Account_BulkAPIv1_Wait_Example_Insert".

WAIT in Version 2 of the Bulk API means the SQL process will remain live while it waits for the Bulk

API to return all responses to the _Return table (Version 2 is not able to return Error values and Ids

back to the load table for Inserts and Updates, however it will for updates, Deletes and Harddeletes.

drop table if exists Account_BulkAPIv2_Wait_Insert

select top 100

convert(nchar(18),null) as Id

,convert(nvarchar(255),null) as Error

,'DEMO__PREFIXv2' + Name as Name

,'DEMO__PREFIXv2' + AccountNumber as AccountNumber

,Name as Name_Info

,AccountNumber as AccountNumber_Info

into Account_BulkAPIv2_Wait_Insert

from Account

where AccountNumber is not null

Running the example

exec ss_Loader 'BulkAPIv2Insert', 'DEMO', 'Account_BulkAPIv2_Wait_Insert','WAIT'

SQL-SALES BulkAPIv2Insert run date: 2023-12-09 ------------------

21:18:44: Using Env|Schema: DEMO|dbo

21:18:44: Starting Loader for Account batchsize 10000

21:18:44: SSId added to Account_BulkAPIv2_Wait_Insert

21:18:47: Connection method BULK & BULK API

21:18:47: Bulk API method WAIT

21:18:47: Columns checked against Salesforce metadata

21:18:48: Starting load for Account_BulkAPIv2_Wait_Insert

21:19:03: JobId: 7508d00000TtU7kAAF

21:19:03: Excluded: AccountNumber_Info is not available on object Account

21:19:03: Excluded: Name_Info is not available on object Account

21:19:03: Load complete: Success:100 Failure:0

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

 142 | P a g e

Checking the load table

For Inserts and Version 2, no direct response of Ids and Error column values are written back to the

Load table.

_Return helper table

The batch to which a given row has been allocated is logged in the helper table created in the run

that is your load table + “_Return”, using the above example it is:

Account_BulkAPIv2_Wait_Insert_Return

For Version 2, this provides the created Id and/or Error reason for information purposes, but the rows

do not tire back to your load table.

Create a load table Example (BACK)

This example creates a load table called "Account_BulkAPIv2_BACK_Insert".

drop table if exists Account_BulkAPIv2_BACK_Insert

select top 100

convert(nchar(18),null) as Id

,convert(nvarchar(255),null) as Error

,'DEMO__PREFIX' + Name as Name

,'DEMO__PREFIX' + AccountNumber as AccountNumber

,Name as Name_Info

,AccountNumber as AccountNumber_Info

into Account_BulkAPIv2_BACK_Insert

from Account

where AccountNumber is not null

 143 | P a g e

Running the example (Step 1)

exec ss_Loader 'BulkAPIv2Insert', 'DEMO', 'Account_BulkAPIv2_BACK_Insert','BACK'

SQL-SALES BulkAPIv2Insert run date: 2023-12-09 ------------------

21:25:53: Using Env|Schema: DEMO|dbo

21:25:53: Starting Loader for Account batchsize 10000

21:25:54: SSId added to Account_BulkAPIv2_BACK_Insert

21:25:57: Connection method BULK & BULK API

21:25:57: Bulk API method BACK

21:25:57: Columns checked against Salesforce metadata

21:25:57: Starting load for Account_BulkAPIv2_BACK_Insert

21:26:00: JobId: 7508d00000TtU9WAAV

21:26:00: BulkAPIv2Insert BACKGROUND completed successfully

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Running the example (Step 2 Option 1)

At any time after you have run the initial BACK, you can retrieve processed rows to your _Return

table by reverting back to using the WAIT method. This is achieved by passing in the known Job Id

into the @Special2 input parameter.

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

Note unlike the WAIT method, simply running BACK will not write back to the Result table, you
will need to run a subsequent WAIT for that to be actioned

Note, when using “Option 1” if you have attempted to return processed rows “too soon” and
some rows for a given Batch or Batches are not yet processed by Salesforce, SQL Sales will not
be able to return an Id and Error value hence caution should be exercised and for you to check
your load table.

Alternatively, you can use “Option 2” to check the status of your Job by submitting a followup
BULK request, alongside your known Job Id. This will instruct SQL Sales to check all related
Batches and return the status of the Job Id. When the Job is Closed, no further processing will
occur by Salesforce and you can now run with WAIT to return all Id and Error values.

 144 | P a g e

exec ss_Loader 'BulkAPIv2Insert', 'DEMO',

'Account_BulkAPIv2_BACK_Insert','JOB:WAIT','7508d00000SopjWAAR'

SQL-SALES BulkAPIv2Insert run date: 2023-12-09 ------------------

21:29:59: Using Env|Schema: DEMO|dbo

21:29:59: Starting Loader for Account batchsize 10000

21:29:59: SSId added to Account_BulkAPIv2_BACK_Insert

21:30:02: Connection method BULK & BULK API

21:30:02: Bulk API method JOB:WAIT Job = 7508d00000TtU9WAAV

21:30:02: Columns checked against Salesforce metadata

21:30:03: Starting load for Account_BulkAPIv2_BACK_Insert

21:30:06: JobId: 7508d00000TtU9WAAV, Job Complete

21:30:06: Excluded: AccountNumber_Info is not available on object Account

21:30:06: Excluded: Name_Info is not available on object Account

21:30:06: Load complete: Success:100 Failure:0

Checking the _Return table

The success or failure errors and newly created Ids will be automatically written back to the _Return

table.

Running the example (Step 2 Option 2)

You can keep submitting with BACK and the known Job Id until the Status shows that the Job has

Closed. Once the Job is Closed you can run as with Option 1.

exec ss_Loader 'BulkAPIv2Insert', 'DEMO', 'Account_BulkAPIv2_BACK_Insert','JOB:BACK','

7508d00000TtU9WAAV'

SQL-SALES BulkAPIv2Insert run date: 2023-12-09 ------------------

21:32:33: Using Env|Schema: DEMO|dbo

21:32:33: Starting Loader for Account batchsize 10000

21:32:33: SSId added to Account_BulkAPIv2_BACK_Insert

21:32:36: Connection method BULK & BULK API

21:32:36: Bulk API method JOB:BACK Job = 7508d00000TtU9WAAV

21:32:36: Columns checked against Salesforce metadata

21:32:36: Starting load for Account_BulkAPIv2_BACK_Insert

21:32:40: JobId: 7508d00000TtU9WAAV, Job Complete

21:32:40: BulkAPIv2Insert BACKGROUND completed successfully

 145 | P a g e

BulkAPIv2Update

Create a load table Example (WAIT)

This example creates a load table called "Account_BulkAPIv2_Wait_Update". The Id and Error columns

are mandatory. Generally, an update payload would be built up from querying or working with prior

replicated data for the affected Object by using ss_Replica / ss_Delta. All load operations require the

Error column, whether success or failure, to guide and inform you.

drop table if exists Account_BulkAPIv2_Wait_Update

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Id as AccountNumber

,AccountNumber as AccountNumber_Orig

into Account_BulkAPIv2_Wait_Update

from Account

where AccountNumber not like '0%'

order by createddate desc

Running the example

exec ss_Loader 'BulkAPIv2Update', 'DEMO', 'Account_BulkAPIv2_Wait_Update','WAIT'

SQL-SALES BulkAPIv2Update run date: 2023-12-09 ------------------

21:34:15: Using Env|Schema: DEMO|dbo

21:34:15: Starting Loader for Account batchsize 10000

21:34:15: SSId added to Account_BulkAPIv2_Wait_Update

21:34:18: Connection method BULK & BULK API

21:34:18: Bulk API method WAIT

21:34:18: Columns checked against Salesforce metadata

21:34:18: Starting load for Account_BulkAPIv2_Wait_Update

21:34:32: JobId: 7508d00000TtUCQAA3

21:34:33: Excluded: AccountNumber_Orig is not available on object Account

21:34:33: Load complete: Success:100 Failure:0

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

 146 | P a g e

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column as

with the SOAP API Update operation.

Create a load table Example (BACK)

This example creates a load table called "Account_BulkAPIv2_BACK_Update". The Id and Error

columns are mandatory. All load operations require the Error column, whether success or failure, to

guide and inform you.

exec ss_Delta 'DEMO', 'Account'

drop table if exists Account_BulkAPIv2_BACK_Update

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Id as AccountNumber

,AccountNumber as AccountNumber_Orig

into Account_BulkAPIv2_BACK_Update

from Account

where AccountNumber not like '0%'

order by createddate desc

Running the example (Step 1)

exec ss_Loader 'BulkAPIv2Update', 'DEMO', 'Account_BulkAPIv2_BACK_Update','BACK'

SQL-SALES BulkAPIv2Update run date: 2023-12-09 ------------------

21:37:02: Using Env|Schema: DEMO|dbo

21:37:03: Starting Loader for Account batchsize 10000

21:37:03: SSId added to Account_BulkAPIv2_BACK_Update

21:37:05: Connection method BULK & BULK API

21:37:05: Bulk API method BACK

21:37:05: Columns checked against Salesforce metadata

21:37:06: Starting load for Account_BulkAPIv2_BACK_Update

21:37:09: JobId: 7508d00000TtUCpAAN

21:37:09: BulkAPIv2Update BACKGROUND completed successfully

 147 | P a g e

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Running the example (Step 2 Option 1)

At any time after you have run the initial BACK, you can retrieve processed rows to your load table by

reverting back to using the WAIT method. This is achieved by passing in the known Job Id into the

@Special2 input parameter.

exec ss_Loader 'BulkAPIv2Update', 'DEMO', 'Account_BulkAPIv2_BACK_Update','JOB:WAIT','
7508d00000TtUCpAAN'

SQL-SALES BulkAPIv2Update run date: 2023-12-09 ------------------

21:38:53: Using Env|Schema: DEMO|dbo

21:38:53: Starting Loader for Account batchsize 10000

21:38:53: SSId added to Account_BulkAPIv2_BACK_Update

21:38:56: Connection method BULK & BULK API

21:38:56: Bulk API method JOB:WAIT Job = 7508d00000TtUCpAAN

21:38:56: Columns checked against Salesforce metadata

21:38:57: Starting load for Account_BulkAPIv2_BACK_Update

21:39:00: JobId: 7508d00000TtUCpAAN, Job Complete

21:39:00: Excluded: AccountNumber_Orig is not available on object Account

21:39:00: Load complete: Success:100 Failure:0

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

Note unlike the WAIT method, simply running BACK will not populate Error data to your load
table, see the next set of instructions for how to do this, however the Batch Id(s) are included in
the output dump for information purposes

Note, when using “Option 1” if you have attempted to return processed rows “too soon” and
some rows for a given Batch or Batches are not yet processed by Salesforce, SQL Sales will not
be able to return an Error value hence caution should be exercised and for you to check your
load table.

Alternatively, you can use “Option 2” to check the status of your Job by submitting a followup
BACK request, alongside your known Job Id. This will instruct SQL Sales to check all related
Batches and return the status of the Job Id. When the Job is Closed, no further processing will
occur by Salesforce and you can now run with WAIT to return all Id and Error values.

 148 | P a g e

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column as

with the SOAP API Update operation.

Running the example (Step 2 Option 2)

You can keep submitting with BACK and the known Job Id until the Status shows that the Job has

Closed. Once the Job is Closed you can run as with Option 1.

exec ss_Loader 'BulkAPIv2Update', 'DEMO',

'Account_BulkAPIv2_BACK_Update','JOB:BACK','7508d00000TtUCpAAN'

SQL-SALES BulkAPIv2Update run date: 2023-12-09 ------------------
21:41:16: Using Env|Schema: DEMO|dbo
21:41:16: Starting Loader for Account batchsize 10000
21:41:16: SSId added to Account_BulkAPIv2_BACK_Update
21:41:19: Connection method BULK & BULK API
21:41:19: Bulk API method JOB:BACK Job = 7508d00000TtUCpAAN
21:41:19: Columns checked against Salesforce metadata
21:41:20: Starting load for Account_BulkAPIv2_BACK_Update
21:41:24: JobId: 7508d00000TtUCpAAN, Job Complete
21:41:24: BulkAPIv2Update BACKGROUND completed successfully

 149 | P a g e

BulkAPIv2Delete

Create a load table Example (WAIT)

This example creates a load table called "Account_BulkAPIv2_Wait_Delete". The Id and Error columns

are mandatory. Generally, a delete payload would be built up from querying or working with prior

replicated data for the affected Object by using ss_Replica / ss_Delta. All load operations require the

Error column, whether success or failure, to guide and inform you.

exec ss_Delta 'DEMO', 'Account'

drop table if exists Account_BulkAPIv2_Wait_Delete

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Name as Name_Info

into Account_BulkAPIv2_Wait_Delete

from Account

order by createddate desc

Running the example

exec ss_Loader 'BulkAPIv2Delete', 'DEMO', 'Account_BulkAPIv2_Wait_Delete','WAIT'

SQL-SALES BulkAPIv2Delete run date: 2023-12-09 ------------------
21:42:25: Using Env|Schema: DEMO|dbo

21:42:25: Starting Loader for Account batchsize 10000

21:42:25: SSId added to Account_BulkAPIv2_Wait_Delete

21:42:27: Connection method BULK & BULK API

21:42:27: Bulk API method WAIT

21:42:27: Columns checked against Salesforce metadata

21:42:28: Starting load for Account_BulkAPIv2_Wait_Delete

21:42:42: JobId: 7508d00000TtRuMAAV

21:42:43: Load complete: Success:100 Failure:0

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

 150 | P a g e

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column as

with the SOAP API Delete operation.

Create a load table Example (BACK)

This example creates a load table called "Account_BulkAPIv1_BACK_Serial_Delete". The Id and Error

columns are mandatory. All load operations require the Error column, whether success or failure, to

guide and inform you.

exec ss_Delta 'DEMO', 'Account'

drop table if exists Account_BulkAPIv2_BACK_Delete

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Name as Name_Info

into Account_BulkAPIv2_BACK_Delete

from Account

order by createddate desc

Running the example (Step 1)

exec ss_Loader 'BulkAPIv2Delete', 'DEMO', 'Account_BulkAPIv2_BACK_Delete','BACK'

SQL-SALES BulkAPIv2Delete run date: 2023-12-09 ------------------

21:44:33: Using Env|Schema: DEMO|dbo

21:44:33: Starting Loader for Account batchsize 10000

21:44:33: SSId added to Account_BulkAPIv2_BACK_Delete

21:44:36: Connection method BULK & BULK API

21:44:36: Bulk API method BACK

21:44:36: Columns checked against Salesforce metadata

21:44:36: Starting load for Account_BulkAPIv2_BACK_Delete

21:44:39: JobId: 7508d00000TtUDOAA3

21:44:40: BulkAPIv2Delete BACKGROUND completed successfully

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

Note unlike the WAIT method, simply running BACK will not populate the _Batch table nor write
back Error data to your load table, see the next set of instructions for how to do this, however the
Batch Id(s) are included in the output dump for information purposes

 151 | P a g e

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Running the example (Step 2 Option 1)

At any time after you have run the initial BACK, you can retrieve processed rows to your load table by

reverting back to using the WAIT method. This is achieved by passing in the known Job Id into the

@Special2 input parameter.

exec ss_Loader 'BulkAPIv2Delete', 'DEMO',

'Account_BulkAPIv2_BACK_Delete','JOB:WAIT','7508d00000TtUDOAA3'

SQL-SALES BulkAPIv2Delete run date: 2023-12-09 ------------------

21:46:28: Using Env|Schema: DEMO|dbo

21:46:28: Starting Loader for Account batchsize 10000

21:46:28: SSId added to Account_BulkAPIv2_BACK_Delete

21:46:31: Connection method BULK & BULK API

21:46:31: Bulk API method JOB:WAIT Job = 7508d00000TtUDOAA3

21:46:31: Columns checked against Salesforce metadata

21:46:31: Starting load for Account_BulkAPIv2_BACK_Delete

21:46:35: JobId: 7508d00000TtUDOAA3, Job Complete

21:46:35: Load complete: Success:100 Failure:0

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column as

with the SOAP API Delete operation.

Note, when using “Option 1” if you have attempted to return processed rows “too soon” and
some rows for a given Batch or Batches are not yet processed by Salesforce, SQL Sales will not
be able to return an Error value hence caution should be exercised and for you to check your
load table.

Alternatively, you can use “Option 2” to check the status of your Job by submitting a followup
BACK request, alongside your known Job Id. This will instruct SQL Sales to check all related
Batches and return the status of the Job Id. When the Job is Closed, no further processing will
occur by Salesforce and you can now run with WAIT to return all Id and Error values.

 152 | P a g e

Running the example (Step 2 Option 2)

You can keep submitting with BACK and the known Job Id until the Status shows that the Job has

Closed. Once the Job is Closed you can run as with Option 1.

exec ss_Loader 'BulkAPIv2Delete', 'DEMO',

'Account_BulkAPIv2_BACK_Delete','JOB:BACK','7508d00000TtUDOAA3'

SQL-SALES BulkAPIv2Delete run date: 2023-12-09 ------------------

21:47:59: Using Env|Schema: DEMO|dbo

21:47:59: Starting Loader for Account batchsize 10000

21:47:59: SSId added to Account_BulkAPIv2_BACK_Delete

21:48:02: Connection method BULK & BULK API

21:48:02: Bulk API method JOB:BACK Job = 7508d00000TtUDOAA3

21:48:02: Columns checked against Salesforce metadata

21:48:03: Starting load for Account_BulkAPIv2_BACK_Delete

21:48:06: JobId: 7508d00000TtUDOAA3, Job Complete

21:48:06: BulkAPIv2Delete BACKGROUND completed successfully

 153 | P a g e

BulkAPIv2Harddelete

Create a load table Example (WAIT)

This example creates a load table called "Account_BulkAPIv2_Wait_Harddelete". The Id and Error

columns are mandatory. Generally, an undelete payload would be built up from querying or working

with prior deleted data for the affected Object. All load operations require the Error column, whether

success or failure, to guide and inform you.

exec ss_Delta 'DEMO', 'Account'

drop table if exists Account_BulkAPIv2_Wait_Harddelete

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Name as Name_Info

into Account_BulkAPIv2_Wait_Harddelete

from Account

order by createddate desc

Running the example

exec ss_Loader 'BulkAPIv2Harddelete', 'DEMO', 'Account_BulkAPIv2_Wait_Harddelete','WAIT'

SQL-SALES BulkAPIv2Harddelete run date: 2023-12-09 --------------

21:49:27: Using Env|Schema: DEMO|dbo

21:49:27: Starting Loader for Account batchsize 10000

21:49:27: SSId added to Account_BulkAPIv2_Wait_Harddelete

21:49:30: Connection method BULK & BULK API

21:49:30: Bulk API method WAIT

21:49:30: Columns checked against Salesforce metadata

21:49:31: Starting load for Account_BulkAPIv2_Wait_Harddelete

21:49:32: Failed to create job. Status code: 400, which in V2 of the Bulk API can mean your User

does not have Hard delete permissions

exec ss_Loader 'BulkAPIv1Harddelete', 'HARD',

'Account_BulkAPIv1_Wait_Serial_Harddelete','WAIT:SERIAL'

SQL-SALES BulkAPIv2Harddelete run date: 2023-12-09 --------------

21:50:36: Using Env|Schema: HARD|dbo

21:50:36: Starting Loader for Account batchsize 10000

Note, by default a sys admin user will not have permission to run Harddelete, you will need a
special profile created (in fact cloned) from a system administrator and Dard delete enabled on
it, without this initial preparation you will encounter the above error message

A special Envionment has been setup in this Demo, called “HARD” (which uses a different
username, with a Harddelete profile enabled

 154 | P a g e

21:50:36: SSId added to Account_BulkAPIv2_Wait_Harddelete

21:50:39: Connection method BULK & BULK API

21:50:39: Bulk API method WAIT

21:50:39: Columns checked against Salesforce metadata

21:50:39: Starting load for Account_BulkAPIv2_Wait_Harddelete

21:50:54: JobId: 7508d00000TtU9dAAF

21:50:55: Load complete: Success:100 Failure:0

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column.

Create a load table Example (BACK)

This example creates a load table called "Account_BulkAPIv2_BACK_Example_Harddelete". The Id and

Error columns are mandatory. All load operations require the Error column, whether success or

failure, to guide and inform you.

exec ss_Delta 'DEMO', 'Account'

drop table if exists Account_BulkAPIv2_BACK_Harddelete

select top 100

convert(nchar(18),Id) as Id

,convert(nvarchar(255),null) as Error

,Name as Name_Info

into Account_BulkAPIv2_BACK_Harddelete

from Account

order by createddate desc

Running the example (Step 1)

exec ss_Loader 'BulkAPIv2Harddelete', 'HARD', 'Account_BulkAPIv2_BACK_Harddelete','BACK'

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

 155 | P a g e

SQL-SALES BulkAPIv2Harddelete run date: 2023-12-09 --------------

21:53:22: Using Env|Schema: HARD|dbo

21:53:22: Starting Loader for Account batchsize 10000

21:53:22: SSId added to Account_BulkAPIv2_BACK_Harddelete

21:53:25: Connection method BULK & BULK API

21:53:25: Bulk API method BACK

21:53:25: Columns checked against Salesforce metadata

21:53:25: Starting load for Account_BulkAPIv2_BACK_Harddelete

21:53:29: JobId: 7508d00000TtU3tAAF

21:53:29: BulkAPIv2Harddelete BACKGROUND completed successfully

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Running the example (Step 2 Option 1)

At any time after you have run the initial BACK, you can retrieve processed rows to your load table by

reverting back to using the WAIT method (either in SERIAL or PARALLEL mode). This is achieved by

passing in the known Job Id into the @Special2 input parameter.

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

Note unlike the WAIT method, simply running BACK will not populate the _Batch table nor write
back Error data to your load table, see the next set of instructions for how to do this, however the
Batch Id(s) are included in the output dump for information purposes

Note, when using “Option 1” if you have attempted to return processed rows “too soon” and
some rows for a given Batch or Batches are not yet processed by Salesforce, SQL Sales will not
be able to return an Error value hence caution should be exercised and for you to check your
load table.

Alternatively, you can use “Option 2” to check the status of your Job by submitting a followup
BACK request, alongside your known Job Id. This will instruct SQL Sales to check all related
Batches and return the status of the Job Id. When the Job is Closed, no further processing will
occur by Salesforce and you can now run with WAIT to return all Id and Error values.

 156 | P a g e

exec ss_Loader 'BulkAPIv2Harddelete', 'HARD',

'Account_BulkAPIv2_BACK_Harddelete','JOB:WAIT','7508d00000TtU3tAAF'

SQL-SALES BulkAPIv2Harddelete run date: 2023-12-09 --------------

21:54:40: Using Env|Schema: HARD|dbo

21:54:40: Starting Loader for Account batchsize 10000

21:54:40: SSId added to Account_BulkAPIv2_BACK_Harddelete

21:54:43: Connection method BULK & BULK API

21:54:43: Bulk API method JOB:WAIT Job = 7508d00000TtU3tAAF

21:54:43: Columns checked against Salesforce metadata

21:54:43: Starting load for Account_BulkAPIv2_BACK_Harddelete

21:54:47: JobId: 7508d00000TtU3tAAF, Job Complete

21:54:47: Load complete: Success:100 Failure:0

Checking the load table

The success or failure errors for each row will be automatically written back to the Error column.

Running the example (Step 2 Option 2)

You can keep submitting with BACK and the known Job Id until the Status shows that the Job has

Closed. Once the Job is Closed you can run as with Option 1.

exec ss_Loader 'BulkAPIv2Harddelete', 'HARD',

'Account_BulkAPIv2_BACK_Harddelete','JOB:BACK','7508d00000TtU3tAAF'

SQL-SALES BulkAPIv2Harddelete run date: 2023-12-09 --------------

21:56:34: Using Env|Schema: HARD|dbo

21:56:34: Starting Loader for Account batchsize 10000

21:56:34: SSId added to Account_BulkAPIv2_BACK_Harddelete

21:56:36: Connection method BULK & BULK API

21:56:36: Bulk API method JOB:BACK Job = 7508d00000TtU3tAAF

21:56:36: Columns checked against Salesforce metadata

21:56:37: Starting load for Account_BulkAPIv2_BACK_Harddelete

21:56:40: JobId: 7508d00000TtU3tAAF, Job Complete

21:56:40: BulkAPIv2Harddelete BACKGROUND completed successfully

 157 | P a g e

BulkAPIv2Upsert
As with the SOAP API Upsert, working with the Salesfore Bulk API v2 is a little different to the other

operations. BulkAPIv2Update, BulkAPIv2Delete and BulkAPIv2Harddelete work from the provided Id,

with regards what records to operate against. Insert merely creates new records and passes the new

Id back.

Whereas BulkAPIv2Upsert, as the name suggests, works primarily off a provided External Id for the

given object being upserted against.

If a match is found in that Salesforce object for the value being passed in, then the Operation will

update the provided fields in the table payload to the matched record.

If a match is not found, the Upsert operation will insert a new record, using the provided fields in the

table payload. All load operations require the Error column, whether success or failure, to guide and

inform you.

External Id

Upsert will only work against an External data type field. This is a special setting for a field in

Salesforce:

For this example, the field "External_Id__c" has been added to the Account object, note the special

indicator "(External ID)". If you intended External Id does not have this, it is likely not actually setup as

an External Id, no matter what the field name is.

SQL Sales will inform if it is not truly an External Id, this is demonstrated in the following examples.

https://downloads.intercomcdn.com/i/o/774587644/09ff1df0944ac5f947e1ece5/ss_Loader+upsert1.png
https://downloads.intercomcdn.com/i/o/774588044/fe7f3d02920476154e7fcdf1/ss_Loader+upsert2.png

 158 | P a g e

Create a load table Example (WAIT)

This example creates a load table called "Account_BulkAPIv2_Wait_Upsert".

drop table if exists Account_BulkAPIv2_Wait_Upsert

select top 33

convert(nchar(18),null) as Id

,convert(nvarchar(255),null) as Error

,Name

,'UPDATE_TEST_' + Id as AccountNumber

,External_Id__c

,AccountNumber as AccountNumber_Orig

into Account_BulkAPIv2_Wait_Upsert

from Account

where AccountNumber not like '0%'

and External_Id__c is not null

order by createddate desc

insert Account_BulkAPIv2_Wait_Upsert

(Id

,Error

,Name

,AccountNumber

,External_Id__c

,AccountNumber_Orig)

select top 33

convert(nchar(18),null) --Id

,convert(nvarchar(255),null) --Error

,Name

,'REJECT_TEST_' + Id --AccountNumber

,null --External_Id__c

,null --AccountNumber_Orig

from Account

where AccountNumber not like '0%'

and External_Id__c is not null

order by createddate desc

insert Account_BulkAPIv2_Wait_Upsert

(Id

,Error

,Name

,AccountNumber

,External_Id__c

,AccountNumber_Orig)

select top 33

convert(nchar(18),null) --Id

,convert(nvarchar(255),null) --Error

,Name

,'INSERT_TEST_' + Id --AccountNumber

,'INSERT_TEST_' + Id --AExternal_Id__c

,null --AccountNumber_Orig

from Account

where AccountNumber not like '0%'

and External_Id__c is not null

order by createddate desc

Check the Payload

Note, those records with a matched (to Salesforce) value in External_Id__c will result in an update,

those with a new value but no match to Salesforce will result in an Insert, whereas those with no

 159 | P a g e

value in External_Id__c will be rejected (as External_Id__c, being the specified External Id field for the

BulkAPIv1Upsert operation, es expected to be populated).

Running the example (incorrect)

exec ss_Loader 'BulkAPIv2Upsert', 'DEMO', 'Account_BulkAPIv2_Wait_Upsert','WAIT'

SQL-SALES BulkAPIv2Upsert run date: 2023-12-09 ------------------

22:02:11: Using Env|Schema: DEMO|dbo

22:02:11: Provided Upsert Operation value not in the correct format, for a hypothetical field

called "External_Id__c"

22:02:11: set (in Salesforce) as an External Id (this is a field setting)

22:02:11: the expected input value for the standard web services API is:

Upsert:XId=External_Id__c

22:02:11: or BulkAPIv1Upsert:XId=External_Id__c for the bulk API v1

22:02:11: or BulkAPIv2Upsert:XId=External_Id__c for the bulk API v2

22:02:11: with a defined batchsize (for example 100 or 1000 respectively) these would be:

22:02:11: Upsert(100):XId=External_Id__c | BulkAPIv1Upsert(10000):XId=External_Id__c |

BulkAPIv2Upsert(2000):XId=External_Id__c

22:02:11: Note, the provided External Id is validated directly against Salesforce Account

22:02:11: prior to the run commencing to check it is actually defined as an External Id.

Note, the format provided in the example is incorrect, observe the supporting help text

 160 | P a g e

Running the example (correct)

exec ss_Loader 'BulkAPIv2Upsert:XId=External_Id__c', 'DEMO',

'Account_BulkAPIv2_Wait_Upsert','WAIT'

SQL-SALES BulkAPIv2Upsert:XId=External_Id__c run date: 2023-12-09

22:02:55: Using Env|Schema: DEMO|dbo

22:02:58: Starting Loader for Account batchsize 10000

22:02:58: SSId added to Account_BulkAPIv2_Wait_Upsert

22:03:01: Connection method BULK & BULK API

22:03:01: Bulk API method WAIT

22:03:01: Columns checked against Salesforce metadata

22:03:01: Starting load for Account_BulkAPIv2_Wait_Upsert

22:03:16: JobId: 7508d00000TtUJvAAN

22:03:16: Excluded: AccountNumber_Orig is not available on object Account

22:03:16: Load complete: Success:66 Failure:33

Ss_BulkAPILog table

The Job Id is also preserved in the Ss_BulkAPILog table, written on each submission.

Checking the load table

For Inserts and Version 2, no direct response of Ids and Error column values are written back to the

Load table.

_Return helper table

The batch to which a given row has been allocated is logged in the helper table created in the run

that is your load table + “_Return”, using the above example it is:

Account_BulkAPIv2_Wait_Upsert_Return

For Version 2, this provides the created Id and/or Error reason for information purposes, but the rows

do not tire back to your load table.

Note the Job Id for your submission is returned in the output for your reference, see also the log
table ss_BulkAPILog

 161 | P a g e

TECHNICAL OVERVIEW

SQL-Sales is an application installed on a SQL Server. It receives instructions from SQL Server

Management Studio (SSMS) stored procedures to read and write to Salesforce. It comprises 3

executables:

SQLSalesConfig.exe

• Configuration tool (with UI), where connections to Salesforce are defined

• Connections and data requests are via basic Username+Password+Security token (SOAP or

REST) as well as OAuth2.0 (JWT, via REST)

SQLSalesDaemon.exe

• Constantly running Daemon process, connecting to Salesforce on demand, according to

instructions from the end user (in SSMS) via the Handler

SQLSalesHandler.exe

• Handles requests from SQL Server Management Studio (SSMS), which are passed to the

Daemon

The installation is outlined below

 162 | P a g e

SQL-Sales Config
This is where credentials and customisations to how data is processed, per given Salesforce instance,

are defined. As shown, the connection methods are via traditional Username+Password+Security

token (SOAP or REST) as well as OAuth2.0 (JWT, via REST).

Shown above top right are the Environments defined for the installation and a visual indicator of

whether the Daemon is running/stopped – as well as the ability to start the Daemon (although

running a SQL-Sales stored procedure in SSMS for an enabled Database will auto-start the Daemon).

Top left is an example (in this case for a sandbox called “demo”).

The process for storing configuration credential and attributes securely involves a series of steps

designed to protect the data from unauthorised access by encrypting it before saving it to a file. This

ensures that even if someone gains access to the storage file (unlikely on a SQL Server), they will not

be able to understand or use the stored data without the correct key.

 163 | P a g e

Note, the configuration file storage location can be fully configured by the SQL Server user. Typically

this will be saved directly on the SQL Server itself (i.e. with the inherent protection of being on the

root drives of the SQL Server). Alternatively, the storage location can be a network drive for example

to which only the user of the SQL-Sales Config tool has access to.

OAuth 2.0 Setup
Whilst the traditional Username+Password+Security token is supported and requires no Salesforce

setup other than the Managed Package, for enhanced security, an OAuth 2.0 connection option is

offered which requires minimal Salesforce configuration. SQL-Sales OAuth 2.0 will intentionally not

work without an additional user-created connected app, for the given Salesforce instance and SQL-

Sales configuration installation/SQL Server. For maximum security each SQL-Sales config installation

(on potentially multiple SQL Servers) connecting to the same Salesforce instance will need their own

dedicated Custom Connected App setting up.

The setup process is documented here

https://help.sql-sales.com/en/articles/9518676-connecting-with-oauth-2-0
https://help.sql-sales.com/en/articles/9518676-connecting-with-oauth-2-0

 164 | P a g e

In summary, the steps for creating a custom connected app are:

1. In Salesforce. Create the new Connected App in the given Salesforce instance

a. Enable OAuth

b. Use digital signatures

c. Selected OAuth Scopes

i. Manage user data via APIs (api)

ii. Perform requests at any time (refresh_token, offline_access)

d. Issue JSON Web Token (JWT)-based access tokens for named users

e. OAuth Policies

i. Admin approved users are pre-authorized

ii. Issue JSON Web Token (JWT)-based access tokens (ticked)

iii. Token Timeout (30 Minutes)

iv. Enforce IP restrictions (Refresh token is valid until revoked)

f. Manage Profiles

i. Selected Profile relevant for the nominated integration user

g. Manage Consumer Details

i. Copy the Consumer Key

2. In SQL-Sales Configuration

a. Enter Integration Username (the nominated integration user)

b. Enter Custom Connected App (the name of the connected app created in step 1

above)

c. Enter (paste) the Consumer Key from step 1 above

d. Enter Expiration (days) – maximum permitted is 365

e. Click “Create Certificate” this will automatically securely store the private key within

the SQL-Sales Config storage mechanism and pass the public key to the clipboard, at

no point (ever) does SQL-Sales save or store the public key

f. User is wholly responsible for the creation and key vault storage (if relevant) of the

resultant created .pem file where the key is pasted from the clipboard

3. In Salesforce. Return to the custom connected app created in Step 1

a. Use digital signatures

i. Choose File (of the .pem user created file from Step 2)

4. In SQL-Sales Configuration

a. Click “Test Salesforce” – that’s at, OAuth2.0 setup is complete, this is a double-

pronged security model where a Manage Package (Managed connected App) is

required, alongside a custom instance-installation specific connected app must be

setup to work alongside.

 165 | P a g e

installation Summary
A step by step guide

1. Install the SQL-Sales Managed Package, see here

2. Download installation zip SQL-Sales.zip from here. The zip contains:

a. SQL-Sales read me.txt

b. SQL-Sales Guide.pdf

c. SQLSalesInstaller.exe

3. Extract SQLSalesInstaller.exe from the zip and run, setup instructions here, this installs:

a. SQLSalesConfig.exe

b. SQLSalesHandler.exe

c. SQLSalesDaemon.exe

d. UninstallSQLSales.exe

e. ss_EnableDatabase.sql

4. Enable your required SQL Server Database, instructions here

5. On the SQL Server, open “SQL-Sales Config”

a. Create an Environment and configure as required

b. Start the Daemon (optional, it will self-start on first use)

6. Create a custom Conncted App if required, see here

7. On either a client SQL Server Management Studio (SSMS) or from SSMS directly on the SQL

Server, run the required stored procedure to read or write to Salesforce, depending on what

you want to do, full online user documentation here, or standalone pdf here.

https://help.sql-sales.com/en/articles/9606814-managed-package-installation
https://sql-sales.com/download/sql-sales-zip
https://help.sql-sales.com/en/articles/8050476-installation
https://help.sql-sales.com/en/articles/8700500-database-enabling
https://help.sql-sales.com/en/articles/9518676-connecting-with-oauth-2-0
https://help.sql-sales.com/en/
https://sql-sales.com/download/sql-sales-guide-pdf

 166 | P a g e

LICENCING ARRANGEMENTS
There are no limits on the use of SQL-Sales either commercially or personally, other than via a trial or

paid-for license key. All SQL-Sales software components and libraries are detailed in this section in

fulfilment of respective licencing controls, governing their use.

cryptography

Name: cryptography

Version: 39.0.0

Summary: cryptography is a package which provides cryptographic recipes and primitives to Python

developers.

Home-page: https://github.com/pyca/cryptography

Author: The Python Cryptographic Authority and individual contributors

Author-email: cryptography-dev@python.org

License: (Apache-2.0 OR BSD-3-Clause) AND PSF-2.0

Requires: cffi

Licence Details:

https://github.com/pyca/cryptography/blob/main/LICENSE

https://github.com/pyca/cryptography/blob/main/LICENSE.BSD

see “BSD 3-Clause License” section in this document

https://github.com/pyca/cryptography/blob/main/LICENSE.APACHE

see “Apache 2.0” section in this document

This software is made available under the terms of *either* of the licenses found in LICENSE.APACHE

or LICENSE.BSD. Contributions to cryptography are made under the terms of *both* these licenses.

psutil

Name: psutil

Version: 5.9.4

Summary: Cross-platform lib for process and system monitoring in Python.

Home-page: https://github.com/giampaolo/psutil

Author: Giampaolo Rodola

https://github.com/pyca/cryptography/blob/main/LICENSE
https://github.com/pyca/cryptography/blob/main/LICENSE.BSD
https://github.com/pyca/cryptography/blob/main/LICENSE.APACHE

 167 | P a g e

Author-email: g.rodola@gmail.com

License: BSD-3-Clause

Requires: n/a

Licence Details:

https://github.com/giampaolo/psutil/blob/master/LICENSE

see “BSD 3-Clause License” section in this document

giampaolo/psutil is licensed under the

BSD 3-Clause "New" or "Revised" License

A permissive license similar to the BSD 2-Clause License, but with a 3rd clause that prohibits others

from using the name of the copyright holder or its contributors to promote derived products without

written consent.

requests

Name: requests

Version: 2.28.2

Summary: Python HTTP for Humans.

Home-page: https://requests.readthedocs.io

Author: Kenneth Reitz

Author-email: me@kennethreitz.org

License: Apache 2.0

Requires: certifi, charset-normalizer, idna, urllib3

Required-by: requests-file, requests-toolbelt, simple-salesforce, zeep

Licence Details:

https://github.com/opentracing-contrib/python-requests/blob/master/LICENSE

see “Apache 2.0” section in this document

Copyright 2018 SignalFx, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you

may not use this file except in compliance with the License.

https://github.com/giampaolo/psutil/blob/master/LICENSE
https://github.com/opentracing-contrib/python-requests/blob/master/LICENSE

 168 | P a g e

simple_salesforce

Name: simple-salesforce

Version: 1.12.3

Summary: A basic Salesforce.com REST API client.

Home-page: https://github.com/simple-salesforce/simple-salesforce

Author: Nick Catalano

Author-email: nickcatal@gmail.com

License: Apache 2.0

Requires: pyjwt, requests, zeep

Licence Details:

https://github.com/simple-salesforce/simple-salesforce/blob/master/LICENSE.txt

see “Apache 2.0” section in this document

Copyright 2012 New Organizing Institute Education Fund Licensed under the Apache License,

Version 2.0 (the "License"); you may not use this file except in compliance with the License.

sqlalchemy

Name: SQLAlchemy

Version: 2.0.13

Summary: Database Abstraction Library

Home-page: https://www.sqlalchemy.org

Author: Mike Bayer

Author-email: mike_mp@zzzcomputing.com

License: MIT

Requires: greenlet, typing-extensions

Licence Details:

https://opensource.org/license/mit/

see “MIT License” section in this document

opentracing-contrib/python-sqlalchemy is licensed under the

https://github.com/simple-salesforce/simple-salesforce/blob/master/LICENSE.txt
https://opensource.org/license/mit/

 169 | P a g e

Apache License 2.0

A permissive license whose main conditions require preservation of copyright and license notices.

Contributors provide an express grant of patent rights. Licensed works, modifications, and larger

works may be distributed under different terms and without source code.

pandas

Name: pandas

Version: 1.5.3

Summary: Powerful data structures for data analysis, time series, and statistics

Home-page: https://pandas.pydata.org

Author: The Pandas Development Team

Author-email: pandas-dev@python.org

License: BSD-3-Clause

Requires: numpy, numpy, python-dateutil, pytz

Licence Details:

https://github.com/pandas-dev/pandas/blob/main/LICENSE

see “BSD 3-Clause License” section in this document

pandas-dev/pandas is licensed under the

BSD 3-Clause "New" or "Revised" License

A permissive license similar to the BSD 2-Clause License, but with a 3rd clause that prohibits others

from using the name of the copyright holder or its contributors to promote derived products without

written consent.

pyodbc

Name: pyodbc

Version: 4.0.35

Summary: DB API Module for ODBC

Home-page: https://github.com/mkleehammer/pyodbc

Author:

Author-email:

https://github.com/pandas-dev/pandas/blob/main/LICENSE

 170 | P a g e

License: MIT

Requires: n/a

Licence Details:

https://opensource.org/license/mit/

see “MIT License” section in this document

mkleehammer/pyodbc is licensed under the

MIT No Attribution

A short and simple permissive license with no conditions, not even requiring preservation of

copyright and license notices. Licensed works, modifications, and larger works may be distributed

under different terms and without source code.

pysimplegui

Name: PySimpleGUI

Version: 4.60.4

Summary: Python GUIs for Humans. Launched in 2018. It's 2022 & PySimpleGUI is an ACTIVE &

supported project. Super-simple to create custom GUI's. 325+ Demo programs & Cookbook for

rapid start. Extensive documentation. Main docs at www.PySimpleGUI.org. Fun & your success are

the focus. Examples using Machine Learning (GUI, OpenCV Integration), Rainmeter Style Desktop

Widgets, Matplotlib + Pyplot, PIL support, add GUI to command line scripts, PDF & Image Viewers.

Great for beginners & advanced GUI programmers.

Home-page: https://github.com/PySimpleGUI/PySimpleGUI

Author: PySimpleGUI

Author-email: PySimpleGUI@PySimpleGUI.org

License: GNU Lesser General Public License v3.0

Requires: n/a

Licence Details:

https://www.gnu.org/licenses/lgpl-3.0.en.html

see “GNU Lesser General Public License v3.0” section in this document

Permissions of this copyleft license are conditioned on making available complete source code of

licensed works and modifications under the same license or the GNU GPLv3. Copyright and license

notices must be preserved. Contributors provide an express grant of patent rights. However, a larger

work using the licensed work through interfaces provided by the licensed work may be distributed

under different terms and without source code for the larger work.

https://opensource.org/license/mit/
https://www.gnu.org/licenses/lgpl-3.0.en.html

 171 | P a g e

PIL

Name: PIL

Summary: Python Imaging Library

Author: Fredrik Lundh / Secret Labs AB

License: HPND

Requires: n/a

Licence Details:

see “HPND” section in this document

The Python Imaging Library (PIL) is

Copyright © 1997-2011 by Secret Labs AB

Copyright © 1995-2011 by Fredrik Lundh

Pillow is the friendly PIL fork. It is

Copyright © 2010-2019 by Alex Clark and contributors

Like PIL, Pillow is licensed under the open source PIL Software License:

By obtaining, using, and/or copying this software and/or its associated documentation, you agree

that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its associated documentation for

any purpose and without fee is hereby granted, provided that the above copyright notice appears in

all copies, and that both that copyright notice and this permission notice appear in supporting

documentation, and that the name of Secret Labs AB or the author not be used in advertising or

publicity pertaining to distribution of the software without specific, written prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO

EVENT SHALL SECRET LABS AB OR THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR

CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,

DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE.

PSFL components

Licence Details:

License: PDF 2.0

 172 | P a g e

Requires: n/a

https://spdx.org/licenses/PSF-2.0.html

see “PDF 2.0” section in this document

The following libraries are referenced as-is:

• datetime

• argparse

• base64

• calendar

• configparser

• csv

• gc

• hashlib

• io

• json

• logging

• os

• re

• signal

• socket

• subprocess

• sys

• tempfile

• textwrap

• threading

• time

• xml.etree.ElementTree

• ctypes

• uuid

• traceback

defusedxml

Name: defusedxml

Version: 0.7.1

Summary: defusedxml is a Python library that protects against XML-based attacks such as XML bomb

and XML External Entity (XXE) attacks.

Home-page: https://github.com/tiran/defusedxml

Author: Christian Heimes

https://spdx.org/licenses/PSF-2.0.html

 173 | P a g e

Author-email: christian@python.org

License: Python Software Foundation License

Requires: None

Licence Details: The defusedxml library is distributed under the Python Software Foundation License

(PSF License). This license is permissive, similar to the BSD and Apache licenses, and it allows for free

use, modification, and distribution, including in commercial products. The software is provided "as-

is" without any warranties, so you must not claim any warranty or liability for the defusedxml library

in your own distribution.

pyinstaller

Name: pyinstaller

Version: 5.9.0

Summary: PyInstaller bundles a Python application and all its dependencies into a single package.

Home-page: https://www.pyinstaller.org/

Author: Hartmut Goebel, Giovanni Bajo, David Vierra, David Cortesi, Martin Zibricky

Author-email:

License: GPLv2-or-later with a special exception which allows to use PyInstaller to build and

distribute non-free programs (including commercial ones)

Requires: altgraph, pefile, pyinstaller-hooks-contrib, pywin32-ctypes, setuptools

Licence Details:

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

see “GPL 2.0” section in this document

PyInstaller is distributed under a dual-licensing scheme using both the GPL 2.0 License, with an

exception that allows you to use it to build commercial products - listed below - and the Apache

License, version 2.0, which only applies to a certain few files. To see which files the Apache license

applies to, and to which the GPL applies, please see the COPYING.txt file which can be found in the

root of the PyInstaller source repository.

A quick summary of the GPL license exceptions: You may use PyInstaller to bundle commercial

applications out of your source code.

The executable bundles generated by PyInstaller from your source code can be shipped with

whatever license you want, as long as it complies with the licenses of your dependencies.

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

 174 | P a g e

You may modify PyInstaller for your own needs but changes to the PyInstaller source code fall under

the terms of the GPL license. That is, if you distribute your modifications you must distribute them

under GPL terms.

Nullsoft scriptable install system

Name: NSIS

Summary: NSIS is a professional open source system to create Windows installers

Home-page: https://nsis.sourceforge.io/Main_Page

Author: Amir Szekely

Author-email: kichik@gmail.com

Applicable licenses

All NSIS source code, plug-ins, documentation, examples, header files and graphics, with the

exception of the compression modules and where otherwise noted, are licensed under the

zlib/libpng license.

The zlib compression module for NSIS is licensed under the zlib/libpng license.

The bzip2 compression module for NSIS is licensed under the bzip2 license.

The lzma compression module for NSIS is licensed under the Common Public License version 1.0.

Copyright

Copyright (C) 1999-2024 Contributors

More detailed copyright information can be found in the individual source code files.

APACHE 2.0 LICENSE

Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by

Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is

granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are

controlled by, or are under common control with that entity. For the purposes of this definition,

mailto:kichik@gmail.com
https://www.apache.org/licenses/

 175 | P a g e

"control" means (i) the power, direct or indirect, to cause the direction or management of such entity,

whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding

shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this

License.

"Source" form shall mean the preferred form for making modifications, including but not limited to

software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a

Source form, including but not limited to compiled object code, generated documentation, and

conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under

the License, as indicated by a copyright notice that is included in or attached to the work (an

example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or

derived from) the Work and for which the editorial revisions, annotations, elaborations, or other

modifications represent, as a whole, an original work of authorship. For the purposes of this License,

Derivative Works shall not include works that remain separable from, or merely link (or bind by

name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any

modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted

to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity

authorized to submit on behalf of the copyright owner. For the purposes of this definition,

"submitted" means any form of electronic, verbal, or written communication sent to the Licensor or

its representatives, including but not limited to communication on electronic mailing lists, source

code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor

for the purpose of discussing and improving the Work, but excluding communication that is

conspicuously marked or otherwise designated in writing by the copyright owner as "Not a

Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a

Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor

hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable

copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,

sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor

hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable

(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,

and otherwise transfer the Work, where such license applies only to those patent claims licensable by

such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of

 176 | P a g e

their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute

patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that

the Work or a Contribution incorporated within the Work constitutes direct or contributory patent

infringement, then any patent licenses granted to You under this License for that Work shall

terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof

in any medium, with or without modifications, and in Source or Object form, provided that You meet

the following conditions:

You must give any other recipients of the Work or Derivative Works a copy of this License; and

You must cause any modified files to carry prominent notices stating that You changed the files; and

You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent,

trademark, and attribution notices from the Source form of the Work, excluding those notices that

do not pertain to any part of the Derivative Works; and

If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that

You distribute must include a readable copy of the attribution notices contained within such NOTICE

file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of

the following places: within a NOTICE text file distributed as part of the Derivative Works; within the

Source form or documentation, if provided along with the Derivative Works; or, within a display

generated by the Derivative Works, if and wherever such third-party notices normally appear. The

contents of the NOTICE file are for informational purposes only and do not modify the License. You

may add Your own attribution notices within Derivative Works that You distribute, alongside or as an

addendum to the NOTICE text from the Work, provided that such additional attribution notices

cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or

different license terms and conditions for use, reproduction, or distribution of Your modifications, or

for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the

Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally

submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions

of this License, without any additional terms or conditions. Notwithstanding the above, nothing

herein shall supersede or modify the terms of any separate license agreement you may have

executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service

marks, or product names of the Licensor, except as required for reasonable and customary use in

describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor

provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT

WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation,

any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

 177 | P a g e

PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or

redistributing the Work and assume any risks associated with Your exercise of permissions under this

License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including

negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly

negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including

any direct, indirect, special, incidental, or consequential damages of any character arising as a result

of this License or out of the use or inability to use the Work (including but not limited to damages

for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial

damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works

thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,

or other liability obligations and/or rights consistent with this License. However, in accepting such

obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of

any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor

harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your

accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

BSD 3-Clause License

Copyright (c) Individual contributors.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and

the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions

and the following disclaimer in the documentation and/or other materials provided with the

distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to

endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR

 178 | P a g e

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MIT LICENSE

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and

associated documentation files (the “Software”), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial

portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN

ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH

THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

GNU Lesser General Public v3.0 License

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing

it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of

version 3 of the GNU General Public License, supplemented by the additional permissions listed

below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the

“GNU GPL” refers to version 3 of the GNU General Public License.

https://fsf.org/

 179 | P a g e

“The Library” refers to a covered work governed by this License, other than an Application or a

Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Library, but which is not

otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a

mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library. The

particular version of the Library with which the Combined Work was made is also called the “Linked

Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the

Combined Work, excluding any source code for portions of the Combined Work that, considered in

isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source

code for the Application, including any data and utility programs needed for reproducing the

Combined Work from the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by

section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to

be supplied by an Application that uses the facility (other than as an argument passed when the

facility is invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event an

Application does not supply the function or data, the facility still operates, and performs whatever

part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to that

copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of

the Library. You may convey such object code under terms of your choice, provided that, if the

incorporated material is not limited to numerical parameters, data structure layouts and accessors, or

small macros, inline functions and templates (ten or fewer lines in length), you do both of the

following:

a) Give prominent notice with each copy of the object code that the Library is used in it and that the

Library and its use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

 180 | P a g e

You may convey a Combined Work under terms of your choice that, taken together, effectively do

not restrict modification of the portions of the Library contained in the Combined Work and reverse

engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that

the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright

notice for the Library among these notices, as well as a reference directing the user to the copies of

the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the

Corresponding Application Code in a form suitable for, and under terms that permit, the user to

recombine or relink the Application with a modified version of the Linked Version to produce a

modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying

Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one

that (a) uses at run time a copy of the Library already present on the user's computer system, and (b)

will operate properly with a modified version of the Library that is interface-compatible with the

Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such

information under section 6 of the GNU GPL, and only to the extent that such information is

necessary to install and execute a modified version of the Combined Work produced by recombining

or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the

Installation Information must accompany the Minimal Corresponding Source and Corresponding

Application Code. If you use option 4d1, you must provide the Installation Information in the manner

specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library

together with other library facilities that are not Applications and are not covered by this License, and

convey such a combined library under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined

with any other library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the Library, and

explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

 181 | P a g e

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General

Public License from time to time. Such new versions will be similar in spirit to the present version, but

may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a

certain numbered version of the GNU Lesser General Public License “or any later version” applies to

it, you have the option of following the terms and conditions either of that published version or of

any later version published by the Free Software Foundation. If the Library as you received it does

not specify a version number of the GNU Lesser General Public License, you may choose any version

of the GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU

Lesser General Public License shall apply, that proxy's public statement of acceptance of any version

is permanent authorization for you to choose that version for the Library.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python or any

part thereof, and wants to make the derivative work available to others as provided herein, then

Licensee hereby agrees to include in any such work a brief summary of the changes made to Python.

4. PSF is making Python available to Licensee on an "AS IS" basis. PSF MAKES NO REPRESENTATIONS

OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT

LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE

OF PYTHON WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,

DISTRIBUTING, OR OTHERWISE USING PYTHON, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED

OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and

conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency,

partnership, or joint venture between PSF and Licensee. This License Agreement does not grant

permission to use PSF trademarks or trade name in a trademark sense to endorse or promote

products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

Standard License Header

There is no standard license header for the license

GPL 2.0 LICENSE

GNU GENERAL PUBLIC LICENSE

 182 | P a g e

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble The licenses for most software are designed to take away your freedom to share and

change it. By contrast, the GNU General Public License is intended to guarantee your freedom to

share and change free software--to make sure the software is free for all its users. This General Public

License applies to most of the Free Software Foundation's software and to any other program whose

authors commit to using it. (Some other Free Software Foundation software is covered by the GNU

Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses

are designed to make sure that you have the freedom to distribute copies of free software (and

charge for this service if you wish), that you receive source code or can get it if you want it, that you

can change the software or use pieces of it in new free programs; and that you know you can do

these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or

to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give

the recipients all the rights that you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which

gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that

there is no warranty for this free software. If the software is modified by someone else and passed

on, we want its recipients to know that what they have is not the original, so that any problems

introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger

that redistributors of a free program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any patent must be licensed for

everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright

holder saying it may be distributed under the terms of this General Public License. The "Program",

 183 | P a g e

below, refers to any such program or work, and a "work based on the Program" means either the

Program or any derivative work under copyright law: that is to say, a work containing the Program or

a portion of it, either verbatim or with modifications and/or translated into another language.

(Hereinafter, translation is included without limitation in the term "modification".) Each licensee is

addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are

outside its scope. The act of running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the Program (independent of having been

made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in

any medium, provided that you conspicuously and appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this

License and to the absence of any warranty; and give any other recipients of the Program a copy of

this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer

warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work

based on the Program, and copy and distribute such modifications or work under the terms of

Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files

and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is

derived from the Program or any part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it,

when started running for such interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a notice that there is no warranty (or

else, saying that you provide a warranty) and that users may redistribute the program under these

conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is

interactive but does not normally print such an announcement, your work based on the Program is

not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are

not derived from the Program, and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those sections when you distribute them

as separate works. But when you distribute the same sections as part of a whole which is a work

based on the Program, the distribution of the whole must be on the terms of this License, whose

permissions for other licensees extend to the entire whole, and thus to each and every part

regardless of who wrote it.

 184 | P a g e

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely

by you; rather, the intent is to exercise the right to control the distribution of derivative or collective

works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with

a work based on the Program) on a volume of a storage or distribution medium does not bring the

other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code

or executable form under the terms of Sections 1 and 2 above provided that you also do one of the

following:

a) Accompany it with the complete corresponding machine-readable source code, which must be

distributed under the terms of Sections 1 and 2 above on a medium customarily used for software

interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge

no more than your cost of physically performing source distribution, a complete machine-readable

copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above

on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source

code. (This alternative is allowed only for noncommercial distribution and only if you received the

program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For

an executable work, complete source code means all the source code for all modules it contains, plus

any associated interface definition files, plus the scripts used to control compilation and installation

of the executable. However, as a special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary form) with the major components

(compiler, kernel, and so on) of the operating system on which the executable runs, unless that

component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated

place, then offering equivalent access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not compelled to copy the source

along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License. However, parties who have

received copies, or rights, from you under this License will not have their licenses terminated so long

as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else

grants you permission to modify or distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by modifying or distributing the

Program (or any work based on the Program), you indicate your acceptance of this License to do so,

 185 | P a g e

and all its terms and conditions for copying, distributing or modifying the Program or works based

on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the Program

subject to these terms and conditions. You may not impose any further restrictions on the recipients'

exercise of the rights granted herein. You are not responsible for enforcing compliance by third

parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other

reason (not limited to patent issues), conditions are imposed on you (whether by court order,

agreement or otherwise) that contradict the conditions of this License, they do not excuse you from

the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations

under this License and any other pertinent obligations, then as a consequence you may not

distribute the Program at all. For example, if a patent license would not permit royalty-free

redistribution of the Program by all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to refrain entirely from distribution

of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the

balance of the section is intended to apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right

claims or to contest validity of any such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is implemented by public license practices.

Many people have made generous contributions to the wide range of software distributed through

that system in reliance on consistent application of that system; it is up to the author/donor to

decide if he or she is willing to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of

this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or

by copyrighted interfaces, the original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding those countries, so that

distribution is permitted only in or among countries not thus excluded. In such case, this License

incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public

License from time to time. Such new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of

this License which applies to it and "any later version", you have the option of following the terms

and conditions either of that version or of any later version published by the Free Software

 186 | P a g e

Foundation. If the Program does not specify a version number of this License, you may choose any

version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution

conditions are different, write to the author to ask for permission. For software which is copyrighted

by the Free Software Foundation, write to the Free Software Foundation; we sometimes make

exceptions for this. Our decision will be guided by the two goals of preserving the free status of all

derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE

PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN

WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY

COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE

PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO

USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED

INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM

TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

 187 | P a g e

HPND LICENSE

By obtaining, using, and/or copying this software and/or its associated documentation, you agree

that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, modify and distribute this software and its documentation for any purpose

and without fee is hereby granted, provided that the above copyright notice appears in all copies,

and that both that copyright notice and this permission notice appear in supporting documentation,

and that the name of Secret Labs AB or the author not be used in advertising or publicity pertaining

to distribution of the software without specific, written prior permission.

PDF 2.0 LICENSE

Full name

Python Software Foundation License 2.0

Short identifier

PSF-2.0

Other web pages for this license

https://opensource.org/licenses/Python-2.0 [no longer live]

Notes

This is the PSF-2.0 license, which is part of the complete Python license text, but also used

independently by some projects.

PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and the Individual

or Organization ("Licensee") accessing and otherwise using this software ("Python") in source or

binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a

nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display

publicly, prepare derivative works, distribute, and otherwise use Python alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's notice of copyright , i.e.,

"Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Python Software Foundation All Rights

Reserved" are retained in Python alone or in any derivative version prepared by Licensee.

zlib/libpng license

This software is provided 'as-is', without any express or implied warranty. In no event will the authors

be held liable for any damages arising from the use of this software.

 188 | P a g e

Permission is granted to anyone to use this software for any purpose, including commercial

applications, and to alter it and redistribute it freely, subject to the following restrictions:

The origin of this software must not be misrepresented; you must not claim that you wrote the

original software. If you use this software in a product, an acknowledgment in the product

documentation would be appreciated but is not required.

Altered source versions must be plainly marked as such, and must not be misrepresented as being

the original software.

This notice may not be removed or altered from any source distribution.

bzip2 license

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

The origin of this software must not be misrepresented; you must not claim that you wrote the

original software. If you use this software in a product, an acknowledgment in the product

documentation would be appreciated but is not required.

Altered source versions must be plainly marked as such, and must not be misrepresented as being

the original software.

The name of the author may not be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Julian Seward, Cambridge, UK.

jseward@acm.org

 189 | P a g e

Common Public License version 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON PUBLIC

LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE PROGRAM

CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:

a) in the case of the initial Contributor, the initial code and documentation distributed under this

Agreement, and b) in the case of each subsequent Contributor:

i) changes to the Program, and

ii) additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that

particular Contributor. A Contribution 'originates' from a Contributor if it was added to the Program

by such Contributor itself or anyone acting on such Contributor's behalf. Contributions do not

include additions to the Program which: (i) are separate modules of software distributed in

conjunction with the Program under their own license agreement, and (ii) are not derivative works of

the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by

the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all

Contributors.

2. GRANT OF RIGHTS

a) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,

worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly display,

publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and such

derivative works, in source code and object code form.

b) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,

worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell, import

and otherwise transfer the Contribution of such Contributor, if any, in source code and object code

form. This patent license shall apply to the combination of the Contribution and the Program if, at

the time the Contribution is added by the Contributor, such addition of the Contribution causes such

combination to be covered by the Licensed Patents. The patent license shall not apply to any other

combinations which include the Contribution. No hardware per se is licensed hereunder.

 190 | P a g e

c) Recipient understands that although each Contributor grants the licenses to its Contributions set

forth herein, no assurances are provided by any Contributor that the Program does not infringe the

patent or other intellectual property rights of any other entity. Each Contributor disclaims any liability

to Recipient for claims brought by any other entity based on infringement of intellectual property

rights or otherwise. As a condition to exercising the rights and licenses granted hereunder, each

Recipient hereby assumes sole responsibility to secure any other intellectual property rights needed,

if any. For example, if a third party patent license is required to allow Recipient to distribute the

Program, it is Recipient's responsibility to acquire that license before distributing the Program.

d) Each Contributor represents that to its knowledge it has sufficient copyright rights in its

Contribution, if any, to grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own license

agreement, provided that:

a) it complies with the terms and conditions of this Agreement; and

b) its license agreement:

i) effectively disclaims on behalf of all Contributors all warranties and conditions, express and

implied, including warranties or conditions of title and non-infringement, and implied warranties or

conditions of merchantability and fitness for a particular purpose;

ii) effectively excludes on behalf of all Contributors all liability for damages, including direct, indirect,

special, incidental and consequential damages, such as lost profits;

iii) states that any provisions which differ from this Agreement are offered by that Contributor alone

and not by any other party; and

iv) states that source code for the Program is available from such Contributor, and informs licensees

how to obtain it in a reasonable manner on or through a medium customarily used for software

exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and

b) a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that

reasonably allows subsequent Recipients to identify the originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to end users,

business partners and the like. While this license is intended to facilitate the commercial use of the

Program, the Contributor who includes the Program in a commercial product offering should do so

 191 | P a g e

in a manner which does not create potential liability for other Contributors. Therefore, if a

Contributor includes the Program in a commercial product offering, such Contributor ("Commercial

Contributor") hereby agrees to defend and indemnify every other Contributor ("Indemnified

Contributor") against any losses, damages and costs (collectively "Losses") arising from claims,

lawsuits and other legal actions brought by a third party against the Indemnified Contributor to the

extent caused by the acts or omissions of such Commercial Contributor in connection with its

distribution of the Program in a commercial product offering. The obligations in this section do not

apply to any claims or Losses relating to any actual or alleged intellectual property infringement. In

order to qualify, an Indemnified Contributor must: a) promptly notify the Commercial Contributor in

writing of such claim, and b) allow the Commercial Contributor to control, and cooperate with the

Commercial Contributor in, the defense and any related settlement negotiations. The Indemnified

Contributor may participate in any such claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product X.

That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes

performance claims, or offers warranties related to Product X, those performance claims and

warranties are such Commercial Contributor's responsibility alone. Under this section, the

Commercial Contributor would have to defend claims against the other Contributors related to those

performance claims and warranties, and if a court requires any other Contributor to pay any

damages as a result, the Commercial Contributor must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON AN "AS

IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED

INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-

INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is

solely responsible for determining the appropriateness of using and distributing the Program and

assumes all risks associated with its exercise of rights under this Agreement, including but not limited

to the risks and costs of program errors, compliance with applicable laws, damage to or loss of data,

programs or equipment, and unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY

CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS),

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR

DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect

the validity or enforceability of the remainder of the terms of this Agreement, and without further

 192 | P a g e

action by the parties hereto, such provision shall be reformed to the minimum extent necessary to

make such provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to

software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by

that Contributor to such Recipient under this Agreement shall terminate as of the date such litigation

is filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim

or counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program

with other software or hardware) infringes such Recipient's patent(s), then such Recipient's rights

granted under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the

material terms or conditions of this Agreement and does not cure such failure in a reasonable period

of time after becoming aware of such noncompliance. If all Recipient's rights under this Agreement

terminate, Recipient agrees to cease use and distribution of the Program as soon as reasonably

practicable. However, Recipient's obligations under this Agreement and any licenses granted by

Recipient relating to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid

inconsistency the Agreement is copyrighted and may only be modified in the following manner. The

Agreement Steward reserves the right to publish new versions (including revisions) of this

Agreement from time to time. No one other than the Agreement Steward has the right to modify

this Agreement. IBM is the initial Agreement Steward. IBM may assign the responsibility to serve as

the Agreement Steward to a suitable separate entity. Each new version of the Agreement will be

given a distinguishing version number. The Program (including Contributions) may always be

distributed subject to the version of the Agreement under which it was received. In addition, after a

new version of the Agreement is published, Contributor may elect to distribute the Program

(including its Contributions) under the new version. Except as expressly stated in Sections 2(a) and

2(b) above, Recipient receives no rights or licenses to the intellectual property of any Contributor

under this Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the

Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws

of the United States of America. No party to this Agreement will bring a legal action under this

Agreement more than one year after the cause of action arose. Each party waives its rights to a jury

trial in any resulting litigation.

Special exception for LZMA compression module

Igor Pavlov and Amir Szekely, the authors of the LZMA compression module for NSIS, expressly

permit you to statically or dynamically link your code (or bind by name) to the files from the LZMA

compression module for NSIS without subjecting your linked code to the terms of the Common

Public license version 1.0. Any modifications or additions to files from the LZMA compression

module for NSIS, however, are subject to the terms of the Common Public License version 1.0.

